Green Nanotechnology Approach: Comparative Evaluation of Silver Nanoparticles from Two Plant Species and Three Solvent Systems
DOI:
https://doi.org/10.62482/pmj.38Keywords:
Silver nanoparticles, Capparis spinosa L. , Prunus laurocerasus L. , antioxidant activity , green synthesisAbstract
Introduction: Green synthesis using plant extracts provides an eco-friendly alternative to conventional nanoparticle production, reducing the use of toxic reagents while stabilizing particle surfaces. This study aimed to synthesize silver nanoparticles (AgNPs) using two plant species extracts and evaluate their antioxidant and antimicrobial potentials.
Methods: The plant was extracted with 70% methanol, 70% ethanol, and distilled water. Extracts were mixed with 1 mM AgNO₃ solution at 25 °C for 24 h to synthesize AgNPs. The total phenolic content was measured using the Folin–Ciocalteu method, expressed as gallic acid equivalents. Antimicrobial activity was assessed against seven bacterial and three yeast strains using agar well diffusion, and minimum inhibitory, bactericidal, and fungicidal concentrations were determined by microdilution following CLSI standards.
Results: The findings revealed that solvent type significantly influenced both the total phenolic content of the extracts and the physicochemical properties of the synthesized nanoparticles. Higher phenolic content was associated with enhanced stability and improved antimicrobial efficacy. Notably, AgNPs synthesized with ethanol extracts demonstrated stronger antibacterial activity, whereas those produced with aqueous extracts showed relatively lower bioactivity.
Conclusions: The plant extract can act as a natural reducing and capping agent for green synthesis of silver nanoparticles. Although free extracts lacked antimicrobial activity, AgNP-enriched extracts displayed broad-spectrum antibacterial and antifungal effects while retaining measurable antioxidant capacity. These findings suggest that plant-based AgNPs offer an environmentally friendly and biocompatible approach for enhancing the biological efficacy of phytochemicals and hold promise for biomedical applications.
References
Kaviyarasu K, Magdalane CM, Jayakumar D, Samson Y, Bashir AKH, Maaza M, Letsholathebe D, Mahmoud HA, Kennedy, J. High performance of pyrochlore-like Sm2Ti2O7heterojunction photocatalyst for efficient degradation of rhodamine-B dye with waste water under visible light irradiation. JKSUS. 2020;32(2):1516-1522. https://doi.org/10.1016/j.jksus.2019.12.006 DOI: https://doi.org/10.1016/j.jksus.2019.12.006
Jomova K, Raptova R, Aloma SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidativestress, and antioxidants: chronic diseases and aging. Arch. Toxicol. 2023;97(10):2499-2574. https://doi.org/10.1007/s00204-023-03562-9 DOI: https://doi.org/10.1007/s00204-023-03562-9
Filip M, Baldea I, David L, Moldovan B, Flontas GC, Macavei S, Muntean MD, Decea N, Tigu BA, Clichici SV. Hybrid material based on Vaccinium myrtillus L. extract and gold nanoparticles reduces oxidative stress and inflammation in hepatic stellate cells exposed to TGF-β. Biomolecules. 2023;13(8):1271. https://doi.org/10.3390/biom13081271 DOI: https://doi.org/10.3390/biom13081271
Santhoshkumar J, Kumar SV, Rajeshkumar S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. RET. 2017;3(4): 459-465. https://doi.org/10.1016/j.reffit.2017.05.001 DOI: https://doi.org/10.1016/j.reffit.2017.05.001
Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emerg. Mater. 2022;5(6):1593-1615. https://doi.org/10.1007/s42247-021-00335-x DOI: https://doi.org/10.1007/s42247-021-00335-x
Krishna AG, Sahana S, Venkatesan H, Arul V. Green synthesis of copper nanoparticles: a promising solution for drug resistance and cancer therapy challenges. J. Egypt. Natl. Cancer Inst. 2024;36(1):44. https://doi.org/10.1186/s43046-024-00254-y DOI: https://doi.org/10.1186/s43046-024-00254-y
Perumal P, Sathakkathulla NA, Kumaran K, Ravikumar R, Selvaraj JJ, Nagendran V, Gurusamy M, Shaik N, Gnanavadivel Prabhakaran S, Suruli Palanichamy V, Ganesan V, Thiraviam PP, Gunalan S, Rathinasamy S. Green synthesis of zinc oxide nanoparticles using aqueous extract of shilajit and their anticancer activity against HeLa cells. Sci Rep. 2024. 14(1):2204. https://doi.org/10.1038/s41598-024-52217-x DOI: https://doi.org/10.1038/s41598-024-52217-x
Patel RR, Singh SK, Singh M. Green synthesis of silver nanoparticles: methods, biological applications, delivery and toxicity. Mater. Adv. 2023;4(8):1831-1849. https://doi.org/10.1039/D2MA01105K DOI: https://doi.org/10.1039/D2MA01105K
Vijayaraghavan P, Rathi MA, Almaary KS, Alkhattaf FS, Elbadawi YB, Chang SW, Ravindran B. Preparation and antibacterial application of hydroxyapatite doped Silver nanoparticles derived from chicken bone. JKSUS. 2022;34(2):101749. https://doi.org/10.1016/j.jksus.2021.101749 DOI: https://doi.org/10.1016/j.jksus.2021.101749
Rafique M, Sadaf I, Rafique MS, Tahir MB. A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol. 2017;45(7):1272-1291. https://doi.org/10.1080/21691401.2016.1241792 DOI: https://doi.org/10.1080/21691401.2016.1241792
Flieger J, Franus W, Panek R, Szymańska-Chargot M, Flieger W, Flieger M, Kołodziej P. Green synthesis of silver nanoparticles using natural extracts with proven antioxidant activity. Molecules. 2021;26(16):4986. https://doi.org/10.3390/molecules26164986 DOI: https://doi.org/10.3390/molecules26164986
Csakvari AC, Moisa C, Radu DG, Olariu LM, Lupitu Al, Panda AO, Pop G, Chambre D, Socoliuc V, Copolovici L, Copolovici DM. Green synthesis, characterization, and antibacterial properties of silver nanoparticles obtained by using diverse varieties of Cannabis sativa leaf extracts. Molecules. 2021;26(13): 4041. https://doi.org/10.3390/molecules26134041 DOI: https://doi.org/10.3390/molecules26134041
Ali EM, Abdallah BM. Effective inhibition of candidiasis using an eco-friendly leaf extract of calotropis-gigantean-mediated silver nanoparticles. Nanomaterials. 2020;10(3):422. https://doi.org/10.3390/nano10030422 DOI: https://doi.org/10.3390/nano10030422
Liyana-Pathirana CM, Shahidi F, Alasalvar C. Antioxidant activity of cherry laurel fruit (Laurocerasus officinalis Roem.) and its concentrated juice. Food Chem. 2006;99(1): 121-128. https://doi.org/10.1016/j.foodchem.2005.06.046. DOI: https://doi.org/10.1016/j.foodchem.2005.06.046
Eken A, Baldemir A, Endirlik Bu, Bakır E, Selen İlgün S. Essential element and metal content of cherry laurel (Laurocerasus officinalis Roem.) fruit and seeds. JHS. 2017;26 (1):1-4.
Karabegović IT, Stojičević SS, Veličković DT, Todorović ZB, Nikolić NC, Lazić ML. The effect of different extraction techniques on the composition and antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Ind. Crops Prod. 2014;54:142-148. https://doi.org/10.1016/j.indcrop.2013.12.047 DOI: https://doi.org/10.1016/j.indcrop.2013.12.047
Arslan R, Bektas N. Antinociceptive effect of methanol extract of Capparis ovata in mice. Pharm. Biol. 2010;48(10):1185-1190. https://doi.org/10.3109/13880201003629323 DOI: https://doi.org/10.3109/13880201003629323
Taşkın T, Taşkın D, Cam ME, Bulut G. Phenolic compounds, biological activities and trace elements of Capparis ovata var. canescens. Rev. Biol. Trop. 2020;68(2):590-600. http://dx.doi.org/10.15517/rbt.v68i2.40215 DOI: https://doi.org/10.15517/rbt.v68i2.40215
Alkaya DB, Seyhan SA, Ozturk BN. Influence of extraction method on antioxidant properties of Rheum ribes root extract. OUAC. 2019 30(1); 44-47. https://doi.org/10.2478/auoc-2019-0008 DOI: https://doi.org/10.2478/auoc-2019-0008
Javadian E, Biabangard A, Ghafari M, Saeeidi S, Fazeli-Nasab B. Green synthesis of silver nanoparticles and antibacterial properties of extracts of Capparis spinosa leaves. J. Med. Plants By-Prod.-JMPB. 2024;13(2):329-343. https://doi.org/10.22034/jmpb.2023.361363.1528
Khan M, Khan T, Wahab S, Aasim M, Sherazi TA, Zahoor M, Yun SI. Solvent based fractional biosynthesis, phytochemical analysis, and biological activity of silver nanoparticles obtained from the extract of Salvia moorcroftiana. Plos one. 2023;18(10):e0287080. https://doi.org/10.1371/journal.pone.0287080 DOI: https://doi.org/10.1371/journal.pone.0287080
Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016;6(2):71-79. https://doi.org/10.1016/j.jpha.2015.11.005 DOI: https://doi.org/10.1016/j.jpha.2015.11.005
Parez CP, Bezerque MP. An antibiotic assay by the agar-well diffusion method. Acta. Biol. Med. Exp. 1990;15-113.
Rex JH, Pfaller MA, Rinaldi MG, Polak A, Galgiani JN. Antifungal susceptibility testing. Clin. Microbiol. Rev. 1993;6(4):367-381. https://doi.org/10.1128/cmr.6.4.367 DOI: https://doi.org/10.1128/CMR.6.4.367
Clinical and Laboratory Standards Institute (CLSI), Performance Standarts for Antimicrobial Susceptibility Testing. 30th Ed, January CLSI supplement M100 Wayne, PA: Clinical and Laboratory Standarts Institue; 2020. https:// www.nih.org.pk/wp-content/uploads/2021/02/CLSI2020.pdf
Clinical and Laboratory Standards Institute (CLSI), Reference Method for Broth Dilution Antifungal Susceptbility Testing of Yeasts; 4th Informational Supplement, M27-S4. CLSI, Wayne PA, USA. 2012. https://doi.org/10.1007/978-1-59745-134-5_2 DOI: https://doi.org/10.1007/978-1-59745-134-5_2
Berkow EL, Lockhart SR, Ostrosky-Zeichner L. Antifungal susceptibility testing: current approaches. Clin. Microbiol. Rev. 2020;33(3):10-1128. https://doi.org/10.1128/cmr.00069-19 DOI: https://doi.org/10.1128/CMR.00069-19
Kebede B, Shibeshi W. In vitro antibacterial and antifungal activities of extracts and fractions of leaves of Ricinus communis Linn against selected pathogens. Vet Med Sci. 2022;8(4):1802-1815. https://doi.org/10.1002/vms3.772 DOI: https://doi.org/10.1002/vms3.772
Khan Z, Al-Thabaiti SA, Obaid AY, Khan ZA, Al-Youbi AO. Effects of solvents on the stability and morphology of CTABstabilized silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2011;390(1-3):120-125. https://doi.org/10.1016/j.colsurfa.2011.09.015 DOI: https://doi.org/10.1016/j.colsurfa.2011.09.015
Sivaselvi D, Vijayakumar N, Jayaprakash R, Amalan V, Rajeswari R, Nagesh MR. Biocatalytic effect of Simarouba glauca leaf phytochemicals on biologically active silver nanoparticles yield and abts antioxidant activity: Green synthesis. Rasayan J. Chem. 2022; 2: 1166-1173. http://doi.org/10.31788/RJC.2022.1526796 DOI: https://doi.org/10.31788/RJC.2022.1526796
Ali S, Perveen S, Ali M, Jiao T, Sharma AS, Hassan H, Devaraj S, Li H, Chen Q. Bioinspired morphology-controlled silver nanoparticles for antimicrobial application. Mater Sci Eng C Mater Biol Appl. 2020;108:110421. https://doi.org/10.1016/j.msec.2019.110421 DOI: https://doi.org/10.1016/j.msec.2019.110421
Jalab J, Kitaz A, Abdelwahed W, Kayali R. Green synthesis of silver nanoparticles using some medicinal plants. Int. Res. J. Pure Appl. Chem. 2020; 21(24): 13-26. https://doi.org/10.9734/irjpac/2020/v21i2430330 DOI: https://doi.org/10.9734/irjpac/2020/v21i2430330
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dilek Bilgic Alkaya, Ceren Sivritepe, Kayra Simal Celik, Pervin Rayaman, Serap Ayaz Seyhan

This work is licensed under a Creative Commons Attribution 4.0 International License.
