Heat Shock Proteins in Cancer


Abstract views: 138 / PDF downloads: 7

Authors

DOI:

https://doi.org/10.62482/pmj.31

Keywords:

HSPs, molecular chaperones, cancer progression, therapeutic targets, cancer biomarkers

Abstract

Heat shock proteins (HSPs) are vital in the progression of cancer, aiding in the survival, proliferation, and metastasis of tumor cells. The overexpression of particular HSPs, such as HSP70 and HSP27, is often found in various malignancies, including lung, breast, and prostate cancers, and correlates with poor prognosis and enhanced resistance to chemotherapy. These proteins stabilize oncogenic proteins, inhibit apoptosis, and modulate the tumor microenvironment, contributing to cancer aggressiveness. Recent studies highlight the potential of HSPs as biomarkers for predicting cancer prognosis and treatment response. Targeting HSPs with specific inhibitors, notably HSP90 inhibitors, has come forth as a viable therapeutic approach to disrupt cancer-related processes and enhance the effectiveness of chemotherapy treatments. Targeting HSPs offers a multi-targeted approach, as these chaperones stabilize multiple oncogenic proteins simultaneously. Overall, this review aims to provide a comprehensive overview of HSPs in cancer, focusing on their role in tumor progression, their clinical implications as biomarkers and therapeutic targets, and the latest developments in HSP-targeted therapies.

References

Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat Shock Proteins and Cancer. Trends Pharmacol Sci. 2017;38(3):226–256. https://doi.org/10.1016/j.tips.2016.11.009 DOI: https://doi.org/10.1016/j.tips.2016.11.009

Jeyachandran S, Chellapandian H, Park K, Kwak IS. A Review on the Involvement of Heat Shock Proteins (Extrinsic Chaperones) in Response to Stress Conditions in Aquatic Organisms. Antioxidants. 2023;12(7):1444. https://doi.org/10.3390/antiox12071444 DOI: https://doi.org/10.3390/antiox12071444

Hoter A, Naim HY. Heat Shock Proteins and Ovarian Cancer: Important Roles and Therapeutic Opportunities. Cancers (Basel). 2019;11(9):1389. https://doi.org/10.3390/cancers11091389 DOI: https://doi.org/10.3390/cancers11091389

Stope MB, Koensgen D, Burchardt M, Concin N, Zygmunt M, Mustea A. Jump in the fire — heat shock proteins and their impact on ovarian cancer therapy. Crit Rev Oncol Hematol. 2016;97:152–156. https://doi.org/10.1016/j.critrevonc.2015.08.008 DOI: https://doi.org/10.1016/j.critrevonc.2015.08.008

Yun CW, Kim HJ, Lim JH, Lee SH. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells. 2019;9(1):60. https://doi.org/10.3390/cells9010060 DOI: https://doi.org/10.3390/cells9010060

Chatterjee S, Burns TF. Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. Int J Mol Sci. 2017;18(9):1978. https://doi.org/10.3390/ijms18091978 DOI: https://doi.org/10.3390/ijms18091978

Guliy OI, Staroverov SA, Dykman LA. Heat Shock Proteins in Cancer Diagnostics. Appl Biochem Microbiol. 2023:59, 395–407. https://doi.org/10.1134/S0003683823040063 DOI: https://doi.org/10.1134/S0003683823040063

Chao Li. Heat Shock Proteins as Novel Cancer Therapeutics: Targeting the Hallmarks of Cancer. PhD Thesis, Virginia Commonwealth University; 2011. https://doi.org/https://doi.org/10.25772/Q1ZF-3Q75

Shevtsov M, Multhoff G. Heat Shock Protein–Peptide and HSP-Based Immunotherapies for the Treatment of Cancer. Front Immunol. 2016;7. https://doi.org/10.3389/fimmu.2016.00171 DOI: https://doi.org/10.3389/fimmu.2016.00171

Das JK, Xiong X, Ren X, Yang JM, Song J. Heat Shock Proteins in Cancer Immunotherapy. J Oncol. 2019;2019:1–9. https://doi.org/10.1155/2019/3267207 DOI: https://doi.org/10.1155/2019/3267207

Deepak P, Kumar S, Acharya A. Heat Shock Proteins (HSP): FutureTrends in Cancer Immunotherapy. Eur J Inflamm. 2006;4(1):1–10. https://doi.org/10.1177/1721727X0600400 DOI: https://doi.org/10.1177/1721727X0600400101

Schulz WA, Hoffmann MJ. Epigenetic mechanisms in the biology of prostate cancer. Semin Cancer Biol. 2009;19(3):172-180. https://doi.org/10.1016/j.semcancer.2009.02.006 DOI: https://doi.org/10.1016/j.semcancer.2009.02.006

Zuo WF, Pang Q, Zhu X, Yang QQ, Zhao Q, He G, Han B, Huang W. Heat shock proteins as hallmarks of cancer: insights from molecular mechanisms to therapeutic strategies. J Hematol Oncol. 2024;17(1):81. https://doi.org/10.1186/s13045-024-01601-1 DOI: https://doi.org/10.1186/s13045-024-01601-1

Li Z, Li Z. Glucose regulated protein 78: A critical link between tumor microenvironment and cancer hallmarks. Biochimica et Biophysica Acta (BBA) – Reviews on Cancer. 2012;1826(1):13–22. https://doi.org/10.1016/j.bbcan.2012.02.001 DOI: https://doi.org/10.1016/j.bbcan.2012.02.001

Ban H, Han TS, Hur K, Cho HS. Epigenetic Alterations of Heat Shock Proteins (HSPs) in Cancer. Int J Mol Sci. 2019;20(19):4758. https://doi.org/10.3390/ijms20194758 DOI: https://doi.org/10.3390/ijms20194758

Seclì L, Fusella F, Avalle L, Brancaccio M. The dark-side of the outside: how extracellular heat shock proteins promote cancer. Cell Mol Life Sci. 2021;78(9):4069–4083. https://doi.org/10.1007/s00018-021-03764-3 DOI: https://doi.org/10.1007/s00018-021-03764-3

Avolio R, Matassa DS, Criscuolo D, Landriscina M, Esposito F. Modulation of Mitochondrial Metabolic Reprogramming and Oxidative Stress to Overcome Chemoresistance in Cancer. Biomolecules. 2020;10(1):135. https://doi.org/10.3390/biom10010135 DOI: https://doi.org/10.3390/biom10010135

Becker JC. The Tumour Microenvironment As a Barrier for Immune Destruction of Cancer. Ann. Oncol. 2014;25:iv26. https://doi.org/10.1093/annonc/mdu306.1 DOI: https://doi.org/10.1093/annonc/mdu306.1

Hanahan D, Weinberg RA. Hallmarks of Cancer: The next generation. Cell. 2011;144(5):646-674. https://doi.org/10.1016/j.cell.2011.02.013 DOI: https://doi.org/10.1016/j.cell.2011.02.013

James M, Crabbe C, Hepburne-Scott HW. Small heat shock proteins (sHSPs) as potential drug targets. Curr Pharm Biotechnol. 2001;2(1):77-111. https://doi.org/10.2174/1389201013378833 DOI: https://doi.org/10.2174/1389201013378833

Collier MP, Benesch JLP. Small heat-shock proteins and their role in mechanical stress. Cell Stress Chaperones. 2020;25(4):601–613. https://doi.org/10.1007/s12192-020-01095-z DOI: https://doi.org/10.1007/s12192-020-01095-z

Kocabiyik S. Essential Structural and Functional Features of Small Heat Shock Proteins in Molecular Chaperoning Process. Protein Pept Lett. 2009;16(6):613–622. https://doi.org/10.2174/092986609788490249 DOI: https://doi.org/10.2174/092986609788490249

Wang B, Pratt MR. Potential for targeting small heat shock protein modifications. Trends Pharmacol Sci. 2024;45(7):583–585. https://doi.org/10.1016/j.tips.2024.04.002 DOI: https://doi.org/10.1016/j.tips.2024.04.002

Kim TD, Choi E, Rhim H, Paik SR, Yang CH. α-Synuclein has structural and functional similarities to small heat shock proteins. Biochem Biophys Res Commun. 2004;324(4):1352–1359. https://doi.org/10.1016/j.bbrc.2004.09.208 DOI: https://doi.org/10.1016/j.bbrc.2004.09.208

Brownell SE, Becker RA, Steinman L. The Protective and Therapeutic Function of Small Heat Shock Proteins in Neurological Diseases. Front Immunol. 2012;3. https://doi.org/10.3389/fimmu.2012.00074 DOI: https://doi.org/10.3389/fimmu.2012.00074

Outeiro TF, Klucken J, Strathearn KE, Liu F, Nguyen P, Rochet JC, Hyman BT, McLean PJ. Small heat shock proteins protect against α-synuclein-induced toxicity and aggregation.Biochem Biophys Res Commun. 2006;351(3):631–8. https://doi.org/10.1016/j.bbrc.2006.10.085 DOI: https://doi.org/10.1016/j.bbrc.2006.10.085

Cyran AM, Zhitkovich A. Heat Shock Proteins and HSF1 in Cancer. Front Oncol. 2022;12. https://doi.org/10.3389/fonc.2022.860320 DOI: https://doi.org/10.3389/fonc.2022.860320

Subjeck JR, Repasky EA. Heat shock proteins and cancer therapy: The trail grows hotter! Oncotarget. 2011;2(6):433– 434. https://doi.org/10.18632/oncotarget.294 DOI: https://doi.org/10.18632/oncotarget.294

Zhang M, Bi X. Heat Shock Proteins and Breast Cancer. Int J Mol Sci. 2024;25(2):876. https://doi.org/10.3390/ijms25020876 DOI: https://doi.org/10.3390/ijms25020876

Zhou G, Pu Y, Zhao K, Chen Y, Zhang G. Heat Shock Proteins in Non-Small-Cell Lung Cancer—Functional Mechanism. Front Biosci. 2023;28(3). https://doi.org/10.31083/j.fbl2803056 DOI: https://doi.org/10.31083/j.fbl2803056

Albakova Z, Norinho DD, Mangasarova Y, Sapozhnikov A. Heat Shock Proteins in Urine as Cancer Biomarkers. Front Med (Lausanne). 2021;8:743476. https://doi.org/10.3389/fmed.2021.743476 DOI: https://doi.org/10.3389/fmed.2021.743476

Ergul M, Aktan F, Yildiz MT, Tutar Y. Perturbation of HSP Network in MCF-7 Breast Cancer Cell Line Triggers Inducible HSP70 Expression and Leads to Tumor Suppression. Anticancer Agents Med Chem. 2020;20(9):1051–1060. https://doi.org/10.2174/1871520620666200213102210 DOI: https://doi.org/10.2174/1871520620666200213102210

Yildiz MT, Tutar L, Giritlioğlu NI, Bayram B, Tutar Y. MicroRNAs and Heat Shock Proteins in Breast Cancer Biology. Methods Mol Biol. 2022;2257:293 – 310. https://doi.org/10.1007/978-1-0716-1170-8_15 DOI: https://doi.org/10.1007/978-1-0716-1170-8_15

Wang B, Lee CW, Witt A, Thakkar A, Ince TA. Heat shock factor 1 induces cancer stem cell phenotype in breast cancer cell lines. Breast Cancer Res Treat. 2015;153(1):57–66. https://doi.org/10.1007/s10549-015-3521-1 DOI: https://doi.org/10.1007/s10549-015-3521-1

Jego G, Hazoumé A, Seigneuric R, Garrido C. Targeting heat shock proteins in cancer. Cancer Lett. 2013;332(2):275–285. https://doi.org/10.1016/j.canlet.2010.10.014 DOI: https://doi.org/10.1016/j.canlet.2010.10.014

Shevtsov M, Multhoff G, Mikhaylova E, Shibata A, Guzhova I, Margulis B. Combination of Anti-Cancer Drugs with Molecular Chaperone Inhibitors. Int J Mol Sci. 2019;20(21):5284. https://doi.org/10.3390/ijms2021528 DOI: https://doi.org/10.3390/ijms20215284

Regimbeau M, Abrey J, Vautrot V, Causse S, Gobbo J, Garrido C. Heat shock proteins and exosomes in cancer theranostics. Semin Cancer Biol. 2022;86:46–57. https://doi.org/10.1016/j.semcancer.2021.07.014 DOI: https://doi.org/10.1016/j.semcancer.2021.07.014

Zoppino FCM, Guerrero-Gimenez ME, Castro GN, Ciocca DR. Comprehensive transcriptomic analysis of heat shockproteins in the molecular subtypes of human breast cancer. BMC Cancer [Internet]. 2018;18(1):700. https://doi.org/10.1186/s12885-018-4621-1 DOI: https://doi.org/10.1186/s12885-018-4621-1

Michils A, Redivo M, Zegers de Beyl V, de Maertelaer V, Jacobovitz D, Rocmans P, Duchateau J. Increased expression of high but not low molecular weight heat shock proteins in resectable lung carcinoma. Lung Cancer. 2001;33(1):59–67. https://doi.org/10.1016/s0169-5002(01)00184-2 DOI: https://doi.org/10.1016/S0169-5002(01)00184-2

Xia S, Duan W, Liu W, Zhang X, Wang Q. GRP78 in lung cancer. J Transl Med. 2021;19(1):118. https://doi.org/10.1186/s12967-021-02786-6 DOI: https://doi.org/10.1186/s12967-021-02786-6

Ferreira S, Esteves S, Almodovar MTAS. Prognostic biomarkers in lung cancer patients treated with immunotherapy. Ann. Oncol. 2019;30:xi6. https://doi.org/10.1093/annonc/mdz447.019 DOI: https://doi.org/10.1093/annonc/mdz447.019

Awad N, El-Hadidi M. A framework for Alternative Splicing Isoforms Detection in Lung Cancer. In: 2021 Tenth International Conference on Intelligent Computing and Information Systems (ICICIS). IEEE; 2021. p. 456–461. https://doi.org/10.1109/ICICIS52592.2021.9694164 DOI: https://doi.org/10.1109/ICICIS52592.2021.9694164

Herbst RS. Cancer immunotherapy; A paradigm shift in the first-line treatment of lung cancer. Ann. Oncol. 2019;30:vi32. https://doi.org/10.1093/annonc/mdz325 DOI: https://doi.org/10.1093/annonc/mdz325

Javid H, Hashemian P, Yazdani S, Sharbaf Mashhad A, Karimi‐Shahri M. The role of heat shock proteins in metastatic colorectal cancer: A review. J Cell Biochem. 2022;123(11):1704–35. https://doi.org/10.1002/jcb.30326 DOI: https://doi.org/10.1002/jcb.30326

Buttacavoli M, Di Cara G, D’Amico C, Geraci F, Pucci-Minafra I, Feo S, Cancemi P. Prognostic and Functional Significant of Heat Shock Proteins (HSPs) in Breast Cancer Unveiled by Multi-Omics Approaches. Biology (Basel). 2021;10(3):247. https://doi.org/10.3390/biology10030247 DOI: https://doi.org/10.3390/biology10030247

Lang BJ, Guerrero-Giménez ME, Prince TL, Ackerman A, Bonorino C, Calderwood SK. Heat Shock Proteins Are Essential Components in Transformation and Tumor Progression: Cancer Cell Intrinsic Pathways and Beyond. Int J Mol Sci. 2019;20(18):4507. https://doi.org/10.3390/ijms20184507 DOI: https://doi.org/10.3390/ijms20184507

Zhang Z, Jing J, Ye Y, Chen Z, Jing Y, Li S, Hong W, Ruan H, Liu Y, Hu Q, Wang J, Li W, Lin C, Diao L, Zhou Y, Han L. Characterization of the dual functional effects of heat shock proteins (HSPs) in cancer hallmarks to aid development of HSP inhibitors. Genome Med. 2020;12(1):101. https://doi.org/10.1186/s13073-020-00795-6 DOI: https://doi.org/10.1186/s13073-020-00795-6

Taha EA, Ono K, Eguchi T. Roles of Extracellular HSPs as Biomarkers in Immune Surveillance and Immune Evasion. Int J Mol Sci. 2019;20(18):4588. https://doi.org/10.3390/ijms20184588 DOI: https://doi.org/10.3390/ijms20184588

Wang F, Xu C, Li G, Lv P, Gu J. Incomplete radiofrequency ablation induced chemoresistance by up-regulating heat shock protein 70 in hepatocellular carcinoma. Exp Cell Res. 2021;409(2):112910. https://doi.org/10.1016/j.yexcr.2021.112910 DOI: https://doi.org/10.1016/j.yexcr.2021.112910

Paul R, Shreya S, Pandey S, Shriya S, Abou Hammoud A, Grosset CF, Prakash Jain B. Functions and Therapeutic Use of Heat Shock Proteins in Hepatocellular Carcinoma. Livers. 2024;4(1):142–163. https://doi.org/10.3390/livers4010011 DOI: https://doi.org/10.3390/livers4010011

Waseem H, Arshad A, Awana MT, Masood H. Heat shock proteins as diagnostic markers for hepatocellular carcinoma: a novel approach. Gastroenterol Hepatol Open Access. 2023;14(1): 23–26. https://doi.org/10.15406/ghoa.2023.14.00535 DOI: https://doi.org/10.15406/ghoa.2023.14.00535

Minami Y. New therapeutic strategies for overcoming resistance and disease persistence in CML. Ann. Oncol. 2019;30:vi39. https://doi.org/10.1093/annonc/mdz345.001 DOI: https://doi.org/10.1093/annonc/mdz345.001

Sueta D, Tsujita K. Therapeutic strategies for ischemic heart disease. Ann. Oncol. 2019;30:vi9. https://doi.org/10.1093/annonc/mdz306.002 DOI: https://doi.org/10.1093/annonc/mdz306.002

Kraft R, Idrees AR, Stenzel L, Nguyen T, Reichert M, Pryss R, Baumeister H. eSano – An eHealth Platform for Internet – and Mobile based Interventions. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:1997-2002. https://doi.org/10.1109/EMBC46164.2021.9629534 DOI: https://doi.org/10.1109/EMBC46164.2021.9629534

Le D, Lim CH, Fazelzad R, Morley L, Bissonnette JP, Powis M, Krzyzanowska MK. Interventions to Promote Safety Culture in Cancer Care: A Systematic Review. J Patient Saf. 2024;20(1):48–56. https://doi.org/10.1097/PTS.0000000000001181 DOI: https://doi.org/10.1097/PTS.0000000000001181

Downloads

Published

2025-10-31

How to Cite

Sagır, S., Tutar , L., & Tutar, Y. (2025). Heat Shock Proteins in Cancer. Pharmedicine Journal, 2(3), 83–92. https://doi.org/10.62482/pmj.31

Issue

Section

Review