Identification of Natural Compounds as Potential FGFR2 Inhibitors in Cholangiocarcinoma via Virtual Screening and Network-Based Analysis


Abstract views: 7 / PDF downloads: 0

Authors

DOI:

https://doi.org/10.62482/pmj.28

Keywords:

FGFR2, cholangiocarcinoma, molecular docking, natural compounds, ADMET analysis

Abstract

Introduction: Cholangiocarcinoma is an aggressive neoplasm of bile duct epithelial cells with poor prognosis due to limited treatment options. Fibroblast growth factor receptor 2 (FGFR2) is critical in cholangiocarcinoma by activating pathways such as MAPK/ERK and PI3K/AKT, marking it as a promising therapeutic target. This study aimed to identify natural FGFR2 inhibitors by using computational methods.

Methods: 46 natural compounds were selected from PubChem based on favorable physicochemical properties and drug-likeness criteria. Molecular docking was performed using SwissDock against FGFR2 (PDB ID: 4J97). The top five compounds were further assessed for pharmacokinetics, pharmacodynamics, and toxicity via SwissADME, pkCSM, and DeepPK tools. Additionally, protein-protein interaction networks and pathway enrichment analyses were conducted using the STRING database and KEGG.

Results: Docking analysis identified Rutecarpine, Palonosetron, Metribolone, 6-Ketoestradiol, and Gestrinone as the top FGFR2 inhibitors, with docking scores between – 6.34 and – 5.95 kcal/mol. ADMET predictions showed favorable drug- like properties, good bioavailability, and acceptable safety profiles. Network and pathway analyses confirmed FGFR2’s role in key oncogenic pathways, including MAPK, PI3K/AKT, and Ras.

Conclusions: This study identified promising FGFR2 inhibitors, particularly Rutecarpine, as potential therapeutic candidates for cholangiocarcinoma, warranting further experimental validation.

References

Ilyas SI, Gores GJ. Pathogenesis, Diagnosis, and Management of Cholangiocarcinoma. Gastroenterology 2013;145:1215-1229. https://doi.org/10.1053/j.gastro.2013.10.013

Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, Lind GE, Folseraas T, Forbes SJ, Fouassier L, Geier A, Calvisi DF, Mertens JC, Trauner M, Benedetti A, Maroni L, Vaquero J, Macias RI, Raggi C, Perugorria MJ, Gaudio E, Boberg KM, Marin JJ, Alvaro D. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016;13:261-280. https://doi.org/10.1038/nrgastro.2016.51

Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 2010;10:116-129. https://doi.org/10.1038/nrc2780

Arai Y, Totoki Y, Hosoda F, Shirota T, Hama N, Nakamura H, Ojima H, Furuta K, Shimada K, Okusaka T, Kosuge T, Shibata T. Fibroblast growth factor receptor 2 tyrosine kinase fusions idefine a unique molecular subtype of cholangiocarcinoma. Hepatology 2014;59:1427 1434. https://doi.org/10.1038/nrc2780

Javle M, Lowery M, Shroff RT, Weiss KH, Springfeld C, Borad MJ, Ramanathan RK, Goyal L, Sadeghi S, Macarulla T, El-Khoueiry A, Kelley RK, Borbath I, Choo SP, Oh DY, Philip PA, Chen LT, Reungwetwattana T, Van Cutsem E, Yeh KH, Ciombor K, Finn RS, Patel A, Sen S, Porter D, Isaacs R, Zhu AX, Abou-Alfa GK, Bekaii-Saab T. Phase II Study of BGJ398 in Patients With FGFR-Altered Advanced Cholangiocarcinoma. J Clin Oncol. 2018;36:276-282. https://doi.org/10.1200/JCO.2017.75.5009

Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, Toska E, Davids MS, Brown JR, Diana P, Stebbing J, Fruman DA, Kumar AP. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 2023;22:138. https://doi.org/10.1186/s12943.023.01827-6

Hoon DS, Furuhashi S, Mizuno S, Ryu S, Naeini YB, Bilchik AJ, Bustos MA. Spatial molecular profiling identifies FGF20 upregulation on cancer-associated fibroblast and FGFR2- PI3K/Akt activation in tumor cells of sporadic early-onset colon cancer. Ann. Oncol. 2023;34:S1517. https://doi.org/10.1016/j.annonc.2023.10.258

Du S, Zhang Y, Xu J. Current progress in cancer treatment by targeting FGFR signaling. Cancer Biol Med 2023;20:490–9. https://doi.org/10.20892/j.issn.2095-3941.2023.0137.

Dixit G, Gonzalez-Bosquet J, Skurski J, Devor EJ, Dickerson EB, Nothnick WB, Issuree PD, Leslie KK, Maretzky T. FGFR2 mutations promote endometrial cancer progression through dual engagement of EGFR and Notch signalling pathways. Clin Transl Med. 2023;13. https://doi.org/10.1002/ctm2.1223.

Gorska-Arcisz M, Popeda M, Braun M, Piasecka D, Nowak JI, Kitowska K, Stasilojc G, Okroj M, Romanska HM, Sadej R. FGFR2-triggered autophagy and activation of Nrf-2 reduce breast cancer cell response to anti-ER drugs. Cell Mol Biol Lett 2024;29:71. https://doi.org/10.1186/s11658.024.00586-6.

Tam B, Severson P, Quah CS, Harding JJ. Phase I study evaluating KIN-3248, a next-generation, irreversible pan-FGFR inhibitor, in patients with advanced cholangiocarcinoma, urothelial carcinoma and other solid tumors harboring FGFR2 and/or FGFR3 gene alterations. Ann. Oncol. 2023;34:S231-232. https://doi.org/10.1016/j.annonc.2023.09.1423.

Lin X, Ding X, Bavadekar S, Rao S, Zhang M, Ren F, Zhavoronkov A. Discovery and preclinical characterization of ISM8001, a covalent and selective FGFR2/FGFR3 dual inhibitor with strong monotherapy anti-tumor activity against advanced solid tumors. Cancer Res 2024;84:5582-5582. https://doi.org/10.1158/1538-7445.AM2024-5582

Subbiah V, Sahai V, Maglic D, Bruderek K, Touré BB, Zhao S, Valverde R, O’Hearn PJ, Moustakas DT, Schönherr H, Gerami- Moayed N, Taylor AM, Hudson BM, Houde DJ, Pal D, Foster L, Gunaydin H, Ayaz P, Sharon DA, Goyal L, Schram AM, Kamath S, Sherwin CA, Schmidt-Kittler O, Jen KY, Ricard F, Wolf BB, Shaw DE, Bergstrom DA, Watters J, Casaletto JB. RLY-4008, the First Highly Selective FGFR2 Inhibitor with Activity across FGFR2 Alterations and Resistance Mutations. Cancer Discov 2023;13:2012-2031. https://doi.org/10.1158/2159-8290.CD-

-0475.

Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WIREs Developmental Biology 2015;4:215-266. https://doi.org/10.1002/wdev.176.

Abou-Alfa GK, Sahai V, Hollebecque A, Vaccaro G, Melisi D, Al- Rajabi R, Paulson AS, Borad MJ, Gallinson D, Murphy AG, Oh DY, Dotan E, Catenacci DV, Van Cutsem E, Ji T, Lihou CF, Zhen H, Féliz L, Vogel A. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol 2020;21:671-684. https://doi.org/10.1016/S14702045(20)30109-1.

Meza K, Villegas De Leon S, Pant S, Tang T-Y, Meric-Bernstam F, Hu ZI, Milind MJ, Lee SS. Tumor vascularity as a predictor of FGFR inhibitor response in FGFR2-fused intrahepatic cholangiocarcinoma. JCO 2025;43:638-638. https://doi.org/10.1200/JCO.2025.43.4_suppl.63

Gong J, Mita AC, Wei Z, Cheng HH, Mitchell EP, Wright JJ, Ivy SP, Wang V, Gray RC, McShane LM, Rubinstein LV, Patton DR, Williams PM, Hamilton SR, Alva AS, Tricoli JV, Conley BA, Arteaga CL, Harris LN, O’Dwyer PJ, Chen AP, Flaherty KT. Phase II Study of Erdafitinib in Patients With Tumors With FGFR Amplifications: Results From the NCI-MATCH ECOG- ACRIN Trial (EAY131) Subprotocol K1. JCO Precis Oncol 2024. https://doi.org/10.1200/PO.23.00406.

Brandi G, Relli V, Deserti M, Palloni A, Indio V, Astolfi A, Serravalle S, Mattiaccio A, Vasuri F, Malvi D, Deiana C, Abbondanza Pantaleo M, Cescon M, Rizzo A, Katoh M, Tavolari S. Activated FGFR2 signalling as a biomarker for selection of intrahepatic cholangiocarcinoma patients candidate to FGFR targeted therapies. Sci Rep 2024;14:3136. https://doi.org/10.1038/s41598.024.52991-8

Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455-461. https://doi.org/10.1002/jcc.21334.

Grosdidier A, Zoete V, Michielin O. SwissDock, a protein- small molecule docking web service based on EADock DSS. Nucleic Acids Res 2011;39:W270-277. https://doi.org/10.1093/nar/gkr366.

Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model 2021;61:3891-3898. https://doi.org/10.1021/acs.jcim.1c00203. Bugnon M, Röhrig UF, Goullieux M, Perez MAS, Daina A, Michielin O, Zoete V. SwissDock 2024: major enhancements for small-molecule docking with Attracting Cavities and AutoDock Vina. Nucleic Acids Res 2024;52:W324-332. https://doi.org/10.1093/nar/gkae300.

Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017;7:42717. https://doi.org/10.1038/srep42717.

Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small- molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 2015;58:4066-4072. https://doi.org/10.1021/acs.jmedchem.5b00104.

Myung Y, de Sá AGC, Ascher DB. Deep-PK: deep learning for small molecule pharmacokinetic and toxicity prediction. Nucleic Acids Res 2024;52:W469-475. https://doi.org/10.1093/nar/gkae254.

Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable AL, Fang T, Doncheva NT, Pyysalo S, Bork P, Jensen LJ, von Mering C. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023;51:D638-D646. https://doi.org/10.1093/nar/gkac1000.

Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016;44:W90-97. https://doi.org/10.1093/nar/gkw377.

Daina A, Michielin O, Zoete V. iLOGP: A Simple, Robust, and Efficient Description of n – Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J Chem Inf Model 2014;54:3284-3301. https://doi.org/10.1021/ci500467k.

Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, Lachmann A, Wojciechowicz ML, Kropiwnicki E, Jagodnik KM, Jeon M, Ma’ayan A. Gene Set Knowledge Discovery with Enrichr. Curr Protoc 2021;1. https://doi.org/10.1002/cpz1.90.

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2025 update. Nucleic Acids Res 2025;53:D1516–25. https://doi.org/10.1093/nar/gkae1059.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997). Adv Drug Deliv Rev 2001;46:3-26. https://doi.org/10.1016/S0169-409X(00)00129-0.

Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J Med Chem 2002;45:2615- 2623. https://doi.org/10.1021/jm020017n.

Ghose AK, Viswanadhan VN, Wendoloski JJ. A Knowledge- Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J Comb Chem 1999;1:55-68. https://doi.org/10.1021/cc9800071.

Stierand K, Rarey M. PoseView – – molecular interaction patterns at a glance. J Cheminform 2010;2:P50. https://doi.org/10.1186/1758-2946-2-S1-P50.

Fährrolfes R, Bietz S, Flachsenberg F, Meyder A, Nittinger E, Otto T, Volkamer A, Rarey M. ProteinsPlus: a web portal for structure analysis of macromolecules. Nucleic Acids Res 2017;45:W337-343. https://doi.org/10.1093/nar/gkx333.

Volkamer A, Kuhn D, Rippmann F, Rarey M. DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics 2012;28:2074-2075. https://doi.org/10.1093/bioinformatics/bts310.

Volkamer A, Kuhn D, Grombacher T, Rippmann F, Rarey M. Combining Global and Local Measures for Structure-Based Druggability Predictions. J Chem Inf Model 2012;52:360-372. https://doi.org/10.1021/ci200454v.

Stierand K, Maaß PC, Rarey M. Molecular complexes at a glance: automated generation of two-dimensional complex diagrams. Bioinformatics 2006;22:1710-1716. https://doi.org/10.1093/bioinformatics/btl150.

Stierand K, Rarey M. Drawing the PDB: Protein−Ligand Complexes in Two Dimensions. ACS Med Chem Lett 2010;1:540-545. https://doi.org/10.1021/ml100164p.

Fricker PC, Gastreich M, Rarey M. Automated Drawing of Structural Molecular Formulas under Constraints. J Chem Inf Comput Sci 2004;44:1065-1078. https://doi.org/10.1021/ci049958u.

Stierand K, Rarey M. From Modeling to Medicinal Chemistry: Automatic Generation of Two‐Dimensional Complex Diagrams. ChemMedChem 2007;2:853-860. https://doi.org/10.1002/cmdc.200700010.

Volkamer A, Griewel A, Grombacher T, Rarey M. Analyzing the Topology of Active Sites: On the Prediction of Pockets and Subpockets. J Chem Inf Model 2010;50:2041-2052.https://doi.org/10.1021/ci100241y.

Downloads

Published

2025-06-27

How to Cite

Sari-Ak, D., Helvaci, N., Con, F., & Kural, A. (2025). Identification of Natural Compounds as Potential FGFR2 Inhibitors in Cholangiocarcinoma via Virtual Screening and Network-Based Analysis. Pharmedicine Journal, 2(2), 59–68. https://doi.org/10.62482/pmj.28

Issue

Section

Articles