Outer Membrane Vesicles (OMVs) as Antibiotic Carriers: A Promising Approach


DOI:
https://doi.org/10.62482/pmj.25Keywords:
Antibacterial therapy, antibiotic resistance, drug delivery, gram-negative bacteria, OMVsAbstract
The misuse and overuse of antibiotics have driven the emergence of antibiotic-resistant bacteria in recent decades. With the increasing incidence of resistant strains and the significant slowdown in new antibiotic discoveries, treating bacterial infections has become more challenging. Therefore, there is an urgent need to explore alternative treatments, such as using bacterial outer membrane vesicles (OMVs) for targeted delivery. OMVs are nanoscale, spherical structures originating from Gram-negative bacteria's outer membrane. These vesicles are naturally released by almost all types of Gram-negative bacteria into their environment during growth and play crucial roles in pathogenesis by transporting specific biomolecules, such as toxins and other virulence factors, to host cells. Due to their unique ability to encapsulate and transport various bioactive molecules across the Gram negative cell membrane, nanosized OMVs hold significant potential as a novel platform for antibiotic delivery. This review discusses biogenesis, biofunctions, and antibacterial applications of OMVs.
References
Huang W, Meng L, Chen Y, Dong Z, Peng Q. Bacterial outer membrane vesicles as potential biological nanomaterials for antibacterial therapy. Acta Biomater. 2022;140:102-115. https://doi.org/10.1016/j.actbio.2021.12.005
Gauba A, Rahman KM. Evaluation of Antibiotic Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics (Basel). 2023;12(11):1590. https://doi.org/10.3390/antibiotics12111590
Liu H, Zhang Q, Wang S, Weng W, Jing Y, Su J. Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: Advances and perspectives, Bioact Mater. 2022; 14:169-181. https://doi.org/10.1016/j.bioactmat.2021.12.006
Collins SM, Brown AC. Bacterial Outer Membrane Vesicles as Antibiotic Delivery Vehicles. Front Immunol. 2021; 12:733064. https://doi.org/10.3389/fimmu.2021.733064
Avila-Calderón ED, Ruiz-Palma del Socorro M, Aguilera-Arreola MaG, Velázquez-Guadarrama N, Ruiz EA, Gomez-Lunar Z, Witonsky S, Contreras-Rodríguez A. Outer Membrane Vesicles of Gram-Negative Bacteria: An Outlook on Biogenesis. Front. Microbiol. 2021;12:557902. https://doi.org/10.3389/fmicb.2021.557902
Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol. 2015;13(10):605-19. https://doi.org/10.1038/nrmicro3525
Jan AT. Outer membrane vesicles (OMVs) of gram-negative bacteria: a perspective update. Front. Microbiol. 2017;8:1053. https://doi.org/10.3389/fmicb.2017.01053
Kulkarni HM, Jagannadham MV. Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology (Reading). 2014;160 (Pt 10):2109-2121. https://doi.org/10.1099/mic.0.079400-0
Ulusoy S, B Akalin R, Çevikbaş H, Berisha A, Oral A, Boşgelmez-Tinaz G. Zeolite 4A as a jammer of bacterial communication in Chromobacterium violaceum and Pseudomonas aeruginosa. Future Microbiol. 2022; 17:861-871. https://doi.org/10.2217/fmb-2021-0174
Seike S, Kobayashi H, Ueda M, Takahashi E, Okamoto K, Yamanaka H. Outer Membrane Vesicles Released From Aeromonas Strains Are Involved in the Biofilm Formation. Front Microbiol. 2021; 11:613650. https://doi.org/10.3389/fmicb.2020.613650
Tashiro Y, Hasegawa Y, Shintani M, Takaki K, Ohkuma M, Kimbara K, Futamata H. Interaction of Bacterial Membrane Vesicles with Specific Species and Their Potential for Delivery to Target Cells. Front Microbiol. 2017; 8:571. https://doi.org/10.3389/fmicb.2017.00571
Jones EJ, Booth C, Fonseca S, Parker A, Cross K, Miquel-Clopés A, Hautefort I, Mayer U, Wileman T, Stentz R, Carding SR. The Uptake, Trafficking, and Biodistribution of Bacteroides thetaiotaomicron Generated Outer Membrane Vesicles. Front Microbiol. 2020; 11:57. https:/doi.org//10.3389/fmicb.2020.00057
Magaña G, Harvey C, Taggart CC, Rodgers AM. Bacterial Outer Membrane Vesicles: Role in Pathogenesis and Host-Cell Interactions. Antibiotics (Basel). 2023;13(1):32. https://doi.org/10.3390/antibiotics13010032
Yu YJ, Wang XH, Fan GC. Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases. Acta Pharmacol Sin. 2018;39(4):514-533. https://doi.org/10.1038/aps.2017.82
Deo P, Chow SH, Hay ID, Kleifeld O, Costin A, Elgass KD, Jiang JH, Ramm G, Gabriel K, Dougan G, Lithgow T, Heinz E, Naderer T. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis. PLoS Pathog. 2018;14(3):e1006945. https://doi.org/10.1371/journal.ppat.1006945
Zhang H, Zhang Y, Song Z, Li R, Ruan H, Liu Q, Huang X. sncRNAs packaged by Helicobacter pylori outer membrane vesicles attenuate IL-8 secretion in human cells. Int J Med Microbiol. 2020;310(1):151356. https://doi.org/10.1016/j.ijmm.2019.151356
Klimentová J, Stulík J. Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiol Res. 2015; 170:1-9. https://doi.org/10.1016/j.micres.2014.09.006
Aytar Çelik P, Derkuş B, Erdoğan K, Barut D, Blaise Manga E, Yıldırım Y, Pecha S, Çabuk A. Bacterial membrane vesicle functions, laboratory methods, and applications. Biotechnol Adv. 2022; 54:107869. https://doi.org/10.1016/j.biotechadv.2021.107869
Pérez-Cruz C, Delgado L, López-Iglesias C, Mercade E. Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria. PLoS One. 2015;10(1):e0116896. https://doi.org/10.1371/journal.pone.0116896
Huang W, Zhang Q, Li W, Yuan M, Zhou J, Hua L, Chen Y, Ye C, Ma Y. Development of novel nanoantibiotics using an outer membrane vesicle-based drug efflux mechanism. J Control Release. 2020; 317:1-22. https://doi.org/10.1016/j.jconrel.2019.11.017
Chen H, Zhou M, Zeng Y, Lv Z, Wang P, and Han L. Recent advances in biomedical applications of bacterial outer membrane vesicles. J. Mater. Chem. B, 2022;10:7384-7396. https://doi.org/10.1039/D2TB00683A
Dean SN, Leary DH, Sullivan CJ, Oh E, Walper SA. Isolation and characterization of Lactobacillus-derived membrane vesicles. Sci. Rep. 2019; 9:877. doi: https://doi.org/10.1038/s41598-018-37120-6
De Benedetto G, Cescutti P, Giannelli C, Rizzo R, Micoli F. Multiple Techniques for Size Determination of Generalized Modules for Membrane Antigens from Salmonella typhimurium and Salmonella enteritidis. ACS Omega. 2017;2(11):8282-8289.https://doi.org/10.1021/acsomega.7b01173
Filipe V, Hawe A, Jiskoot W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010; 27(5):796-810. https://doi.org/10.1007/s11095-010-0073-2
Berleman J, Auer M. The role of bacterial outer membrane vesicles for intra- and interspecies delivery. Environ Microbiol. 2013 Feb;15(2):347-54. https://doi.org/10.1111/1462-2920.12048
Kadurugamuwa JL, Beveridge TJ. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol. 1996;178(10):2767-74. https://doi.org/10.1128/jb.178.10.2767-2774.1996
Kadurugamuwa JL, Beveridge TJ. Delivery of the non-membrane-permeative antibiotic gentamicin into mammalian cells by using Shigella flexneri membrane vesicles. Antimicrob Agents Chemother. 1998;42(6):1476-83. https://doi.org/10.1128/AAC.42.6.1476
MacDonald KL, Beveridge TJ. Bactericidal Effect of Gentamicin-Induced Membrane Vesicles Derived From Pseudomonas aeruginosa PAO1 on Gram Positive Bacteria. Can J Microbiol. 2002;48(9):810–20. https://doi.org/10.1139/w02-077
Gilmore WJ, Johnston EL, Zavan L, Bitto NJ, Kaparakis-Liaskos M. Immunomodulatory roles and novel applications of bacterial membrane vesicles. Mol. Immunol. 2021;134:72-85. https://doi.org/10.1016/j.molimm.2021.02.027
Li P, Wang X, Sun X, Cimino J, Guan Z, Sun W. Recombinant Pseudomonas Bionanoparticles Induce Protection against Pneumonic Pseudomonas aeruginosa Infection. Infect Immun. 2021;89(11):e0039621. https://doi.org/10.1128/iai.00396-21
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Gulgun Tinaz

This work is licensed under a Creative Commons Attribution 4.0 International License.