Amino Acid Supported Conductive Nanocomposite for Developing Flexible Electrode Material for Energy Storage
Abstract views: 70 / PDF downloads: 36
DOI:
https://doi.org/10.62482/pmj.16Keywords:
Energy storage, amino acids, reduced graphene oxide, polypyrrole, supercapacitorAbstract
Introduction: This study focused on synthesizing biocompatible, flexible and wearable electrode materials for energy storage applications. The unique zwitterionic structure of L-proline provides numerous interesting properties to the nanocomposite such as high ionic interactions through the various ion migration channels, and strong hydration characteristics. These features are key to thehigh performance of energy deposition systems.
Methods: Binary nanocomposites containing L-proline (Pro) amino acid and polypyrrole (Ppy) were produced on rGO modified carbon textile (rGO-CC) to develop electroactive materials. Two step hydrothermal method was used to produce flexible electrodes. DRIFT spectroscopy and
AFM analysis were performed to clarify the structural and the morphological characterization. Electrochemical behavior was evaluated utilizing CV, GCD and EIS methods.
Results: ProPpy@rGO-CC electrode materials exhibit high electrochemical performances in aqueous electrolytes (0.1 M NaCl). The prepared electrode shows high specific capacitance of 500.4 Fg-1 (at 25 mVs−1) at the ambient conditions. Additionally, after 5,000 charge/discharge cycles the specific capacitance retains a high level of 95% confirming the good cycle stability. The energy and the power densities were found to be 278 Wh kg−1 and 12.5 kW kg−1, respectively.
Conclusion: The results indicate that the ProPpy@rGO-CC electrode is a promising candidate for next-generation high-performance energy deposition systems. The unique structural features of L-proline contribute to the formation of a large number of electroactive sites and short diffusion pathways.
References
Guan S, Li J, Wang Y, Yang Y, Zhu X, Ye D, Liao Q. Multifunctional MOF‐derived Au, Co‐doped porous carbon electrode for a wearable sweat energy harvesting–storage hybrid system. Adv Mater. 2023;35(39). doi:10.1002/adma.202304465
Lv J, Chen J, Lee PS. Sustainable wearable energy storage devices self‐charged by human‐body bioenergy. SusMat. 2021;1(2):285-302. doi:10.1002/sus2.14
Yin Y, Yang C, Li M, Zheng Y, Ge C, Gu J, Li H, Duan M, Wang X, Chen R. Research progress and prospects for using biochar to mitigate green house gas emissions during composting: a review. Sci Total Environ. 2021;798. doi:10.1016/j.scitotenv.2021.149294
Ahmed S, Sharma P, Bairagi S, Rumjit NP, Garg S, Ali A, Lai CW, Mousavi SM, Hashemi, SA, Hussain CM. Nature-derived polymers and their composites for energy depository applications in batteries and supercapacitors: Advances, prospects sustainability. J. Energy Storage. 2023;66:107391. doi:10.1016/j.est.2023.107391
Mosa IM. Biosupercapacitors for Implantable Bioelectronics & Portable Microfluidic Devices for Prostate Cancer Biomarker Detection and DNA Damage Screening. 2018.
Wang T, Wang L, Wu D, Xia W, Zhao H, Jia D. Hydrothermal synthesis of nitrogen-doped graphene hydrogels using amino acids with different acidities as doping agents. J. Mater. Chem. A. 2014;2(22):8352-8361. doi:10.1039/C4TA00170B
Ma G, Yang Q, Sun K, Peng H, Ran F, Zhao X, Lei Z. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresour Technol. 2015;197:137-142. doi:10.1016/j.biortech.2015.07.100
Fu X, Li R, Yan S, Yuan W, Zhang Y, Sun W, Wang X. Porous carbons prepared from polyacrylonitrile doped with graphitic carbon nitride or melamine for supercapacitor applications. Chemistry Select. 2023;8(34). doi:10.1002/slct.202301801
Wu M, Li W, Li S, Feng G. Capacitive performance of amino acid ionic liquid electrolyte-based supercapacitors by molecular dynamics simulation. RSC advances. 2017;7(46):28945-28950. doi:10.1039/C7RA00443E
Zhou H, Zhou Y, Li L, Li Y, Liu X, Zhao P, Gao B. Amino acid protic ionic liquids: multifunctional carbon precursor for N/S codoped hierarchically porous carbon materials toward supercapacitive energy storage. ACS Sustainable Chem. Eng. 2019;7(10):9281-9290. doi:10.1021/acssuschemeng.9b00279
Sun J, Yu X, Zhao S, Che H, Tao K, Han L. Solvent controlled morphology of amino-functionalized bimetal metal–organic frameworks for asymmetric supercapacitors. Inorg Chem. 2020;59(16):11385- 11395. doi:10.1021/acs.inorgchem.0c01157
Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, RodRuoff RS, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558-1565. doi:10.1016/j.carbon.2007.02.034
Kang Y, Li W, Ma T, Huang X, Mo Y, Chu Z, Zhang Z, Feng G. Microwave-constructed honeycomb architectures of h-BN/rGO nano-hybrids for efficient microwave conversion. Compos. Sci. Technol. 2019;174:184-193. doi:10.1016/j.compscitech.2019.02.029
Shahid M, Katugampalage TR, Khalid M, Ahmed W, Kaewsaneha C, Sreearunothai P, Opaprakasit P. Microwave assisted synthesis of Mn3O4 nanograins intercalated into reduced graphene oxide layers as cathode material for alternative clean power generation energy device. Sci Rep. 2022;12(1). doi:10.1038/s41598-022-23622-x
Sabari Girisun TC, Saravanan M, Soma VR. Wavelength-dependent nonlinear optical absorption and broadband optical limiting in Au-Fe2O3-rGO nanocomposites. ACS Appl. Nano Mater. 2018;1(11). doi:10.1021/acsanm.8b01544
Schoustra S, Kloots M, Posthuma J, Doorn D, Dijksman J, Smulders M. Raman spectroscopy reveals phase separation in imine-based covalent adaptable networks. Macromolecules. 2022;55(23). doi:10341-10355
Chen Z, Takei Y, Deore BA, Nagaoka T. Enantioselective uptake of amino acid with overoxidized polypyrrole colloid templatedwith l-lactate. Analyst. 2000;125(12):2249-2254. doi:10.1039/b005745m
Dipojono H, Safitri I, Budi E, Saputro A, David M, Kasai H. Immobilization of amino acids leucine and glycine on polypyrrole for biosensor applications: a density functional theory study. Itbj Eng Sci. 2011;43(2),113-122. doi:10.5614/itbj.sci.2011.43.2.4
Azioune, A, Chehimi, M, Miksa, B., Basiǹska, T, Słomkowski, S. Hydrophobic protein−polypyrrole interactions: the role of van der waals and lewisacid−base forces as determined by contact angle measurements. Langmuir. 2002;18(4:1150-1156. doi:10.1021/la010444o
Zhu C, Zhai J, Wen D, Dong S. Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J. Mater. Chem. 2012;22:6300. doi:10.1039/c2jm16699b
Vleminckx G, Bose S, Leys J, Vermant J, Wübbenhorst M, Abdala A, Macosko C, Moldenaers P. Effect of thermally reduced graphene sheets on the phase behavior, morphology, and electrical conductivity in poly[(α-methyl styrene)-co-(acrylo,nitrile)/poly(methyl-methacrylate) blends. ACS Appl. Mater. Interfaces. 2011;3(8):3172-3180. doi:10.1021/am200669w
Bose S, Özdilek C, Seo J, Wübbenhorst M, Vermant J, Moldenaers P. Phase separation as a tool to control dispersion of multiwall carbon nanotubes in polymeric blends. ACS Appl. Mater. Interfaces. 2010;2(3):800-807. doi:10.1021/am9008067
Butt HJ, Cappella B, Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications. J. Surf. Rep. 2005;59(1-6):1-152. doi:10.1016/j.surfrep.2005.08.003
Schirmeisen A, Anczykowski B, Fuchs H. Dynamic modes of atomic force microscopy. In: Bhushan B, editor. Springer handbook of nanotechnology. Berlin, Heidelberg: Springer; 2007. p 27. doi:10.1007/978-3-540-29857-1_27
Veeramani V, Madhu R, Chen SM, Sivakumar M, Hung CT, Miyamoto N, Liu SB, NiCo2O4-decorated porous carbon nanosheets for high-performance supercapacitors. J. Electacta. 2017;247:288-295. doi:10.1016/j.electacta.2017.06.171
Britto S, Ramasamy V, Murugesan P, Thangappan R, Kumar R. Preparation and electrochemical validation of rGO-TiO2-MoO3 ternary nanocomposite for efficient supercapacitor electrode. Diamond Relat. Mater. 2022;122:108798. doi:10.1016/j.diamond.2021.108798
Ortaboy S, Alper JP, Rossi F, Bertoni G, Salviati G, Carraro C, Maboudian R. MnOx-decorated carbonized porous silicon nanowire electrodes forhigh performance supercapacitors. Energy Environ. Sci. 2017;10(6):1505-1516. doi:10.1039/C7EE00977A
Jian X, Li JG, Yang HM, Zhang EH, Liang ZH. Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategyfor high-performance supercapacitors. Carbon. 2017;114:533-543, doi:10.1016/j.carbon.2016.12.033
Cao J, Wang Y, Chen J, Li X, Walsh FC, Ouyang J, Jia D, Zhou Y. Three-dimensional graphene oxide/ polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors, J. Mater. Chem. A, 2015;3:14445-14457. doi:10.1039/C5TA02920A
Yang C, Zhang L, Hu N, Yang Z, Wei H, Zhang Y. Reduced graphene oxide/polypyrrole nanotube papers for flexible all-solid-state supercapacitorswith excellent rate capability and high energy density. J. Power Sources. 2016;302:39-45. doi:10.1016/j.jpowsour.2015.10.035
Chen L, Wen Z, Chen L, Wang W, Ai Q, Hou G, Li Y, Lou J, Ci L. Nitrogen and sulfur co-doped porous carbon fibers film for flexible symmetric all-solidstate supercapacitors. Carbon. 2020;158:456-464. doi:10.1016/j.carbon.2019.11.012
Ye S, Feng J. Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors. ACS Appl. Mater. Interfaces. 2014;6(12):9671-9679. doi:10.1021/am502077p
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Pharmedicine Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.