The Antioxidative and Antimicrobial Activity of 2-Amino Substituted Halochalcone N-Glycoside Derivative Compounds
Abstract views: 63 / PDF downloads: 36
DOI:
https://doi.org/10.62482/pmj.13Keywords:
Antimicrobial activity, antioxidant activity, halochalcone, N- glycosideAbstract
Introduction: The aim of this study was to specify the antioxidant and antimicrobial activity synthesized 2-amino substituted halochalcone N-glycoside derivative compounds. Methods: The antioxidant capacity of synthesized compounds (1-4) was determined by cupric ion reducing antioxidant capacity (CUPRAC), and ferric reducing antioxidant power (FRAP). Antimicrobial activity was determined on 9 microorganism by agar well diffusion method.
Results: According to the study results, compound 3 showed the highest antioxidant activity. The compound 3 showed antimicrobial activity against Yersinia pseudotuberculosis, Pseudomonas aeruginosa, Candida albicans while compound 4 showed antimicrobial activity against Escherichia coli, Yersinia pseudotuberculosis, Pseudomonas aeruginosa, Enterococcus faecalis, Bacillus cereus, Staphylococcus aureus.
Conclusion: 2-amino substituted halochalcone N-glycoside derivative compounds could be evaluated in the pharmaceutical and cosmetic fields due to their antioxidant and antimicrobial potential.
References
Climent MJ, Corma A, Iborra S, Velty A. Activated hydrotalcites as catalysts for the synthesis of chalcones of pharmaceutical interest. J Catal. 2004;221(2):474-482. doi: 10.1016/j.jcat.2003.09.012
Li JT, Yang WZ, Wang SX, Li SH, Li TS. Improved synthesis of chalcones under ultrasound irradiation. Ultrason Sonochem. 2002;9(5):237-239. doi:10.1016/S1350-4177(02)00079-2
Erdemoglu N, Sener B. Taksol ve türevlerinin biyosentezi. Ankara Ecz Fak Derg. 1999;28(2):99-116. doi: 10.1501/Eczfak_0000000343
Lahtchev KL, Batovska DI, Parushev P, Ubiyvoyk VM, Sibirny A. Antifungal activity of chalcones: A mechanistic study using various yeast strains. Eur J Med Chem. 2008;43(10):2220-2228. doi: 10.1016/j.ejmech.2007.12.027
Mokale SN, Dube PN, Bhavale SA, Sayed I, Begum A, Nevase MC, Shelke VR, Mujaheed A. Synthesis,In-vitro screening, and docking analysis of novel pyrrolidine and piperidine-substituted ethoxy chalcone as anticancer agents. Med Chem Res. 2015;24(5):1842-1856. doi: 10.1007/s00044-014-1266-8
Ventura TL, Calixto SD, de Azevedo Abrahim-Vieira B, de Souza AM, Mello MV, Rodrigues CR, Soterde Mariz e Miranda L, Alves de Souza RO, Leal IC, Lasunskaia EB, Muzitano MF. Antimycobacterial and anti-inflammatory activities of substituted chalcones focusing on an anti-tuberculosis dual treatment approach. Molecules. 2015;20(5):8072-8093. doi: 10.3390/molecules20058072
Satyanarayana M, Tiwari P, Tripathi BK, Srivastava AK, Pratap R. Synthesis and antihyperglycemic activity of chalcone-based aryloxypropanolamines. Bioorg Med Chem. 2004;12(5):883-889. doi:10.1016/j.bmc.2003.12.026
Wu JH, Wang XH, Yi H, Lee H. Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos. Bioorg Med Chem Lett.2003;13(10):1813-1815. doi: 10.1016/s0960-894x(03)00197-5
Vogel S, Ohmayer S, Brunner G, Heilmann J. Natural and non-natural prenylated chalcones: synthesis, cytotoxicity and antioxidative activity. Bioorg Med Chem. 2008;16(8):4286-4293. doi: 10.1016/j.bmc.2008.02.079 10.
Kim DY, Kim KH, Kim ND, Lee KY, Han CK, Yoon JH, et al. Design and biological evaluation of novel tubulin inhibitors as antimitotic agents using a pharmacophore binding model with tubulin. J Med Chem. 2006;49(19):5664-5670. Doi: 10.1021/jm050761i.
Lin YM, Zhou Y, Flavin MT, Nie W, Chen FC. Chalcones and flavonoids as anti-tuberculosis agents. Bioorg Med Chem. 2002;10(8):2795-2802.doi: 10.1016/S0968-0896(02)00094-9
Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chalcone: a privileged structure in medicinal chemistry. Chem Rev. 2017;117(12):7762-7810. doi: 10.1021/acs.chemrev.7b00020
Yikilmaz M, Fandakli S, Sener SO. Newly SynthesizedN-Glycosidic Halochalcones Reveal Inhibitory Activity on Pancreatic Triacylglycerol Lipase. Chem Nat Compd. 2023;59:629-637. Doi: 10.1007/s10600-023-04075-8
Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem. 1996;239(1):70-76. doi: 10.1006/abio.1996.0292
Apak R, Güçlü K, Ozyürek M, Karademir SE, Erça E. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int J Food Sci Nutr. 2006;57:292-304. doi:10.1080/09637480600798132
Perez C, Pauli M, Bazerque P. An antibiotic assay by the well agar method. Acta Biol et Med Exp. 1990;15:113-115.
Woods GL, Brown-Elliott BA. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes [Internet]. Wayne (PA): Clinical and Laboratory Standards Institute; 2011.
Arianingrum R, Arty IS. The effect of bromo chalcone [1-(4’-bromophenyl)-3-(4hydroxy-3- methoxyphenyl)-2-propene-1-on] on T47D breast cancer cells. AIP Conf Proc. 2018;020071. doi:10.1063/1.5065031.
Roleira MFF, Varela CL, Gomes AR, Costa SC, SilvaEJT. The health components of spices and herbs: the medicinal chemistry point of view. Aromatic Herbs in Food Bioactive Compounds, Processing, and Applications. 2021;35-92. doi: 10.1016/B978-0-12-822716-9.00002-0
Eddarir S, Cotelle N, Bakkour Y, Rolando C. An Efficient Synthesis of Chalcones Based on Suzuki Reaction. Tetrahedron Lett. 2003;44:5359-5363.doi: 10.1016/S0040-4039(03)01140-7
Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem Rev. 2017;117(12):7762-7810. doi: 10.1021/acs.chemrev.7b00020
Sahu NK, Balbhadra SS, Choudhary J, Kohli DV. Exploring pharmacological significance of chalcone scaffold: a review. Curr Med Chem. 2012;19(2):209-225. doi: 10.2174/092986712803414132
Singh P, Anand A, Kumar V. Recent developments in biological activities of chalcones: a mini review. Eur J Med Chem. 2014;85:758-777. doi: 10.1016/j. ejmech.2014.08.033
Díaz-Tielas C, Graña E, Reigosa RM, Sánchez- Moreiras A. Biological activities and novel applications of chalcones. Planta Daninha. 2016;34:607-616. doi:10.1590/S0100-83582016340300022
Yıldız G, İzli G. Microwave and Convective Drying Methods on Food Drying. Ankara, Turkey: Iksad International Publishing House; 2020. ISBN: 978-6057811-87-5
Sugamoto K, Matsusita Y-i, Matsui K, Kurogi C, Matsui T. Synthesis and antibacterial activity ofchalcones bearing prenyl or geranyl groups fromAngelica keiskei. Tetrahedron. 2011;67:5346-5353. doi: 10.1016/j.tet.2011.04.104
Inamori Y, Baba K, Tsujibo H, Taniguchi M, Nakata K, Kozawa M. Antibacterial activity of two chalcones, xanthoangelol and 4-hydroxyderricin, isolated from the root of Angelica keiskei KOIDZUMI. Chem Pharm Bull. 1991;39(6):1604-1605. doi: 10.1248/cpb.39.1604
Kromann H, Larsen M, Boesen T, Schønning K, Nielsen SF. Synthesis of prenylated benzaldehydes and their use in the synthesis of analogues of licochalcone A. Eur J Med Chem. 2004;39(11):993-1000. doi: 10.1016/j.ejmech.2004.07.004
ElSohly HN, Joshi AS, Nimrod AC, Walker LA, Clark AM. Antifungal chalcones from Maclura tinctoria. Planta Med. 2001;67(1):87-89. doi: 10.1055/s-2001-10621
López SN, Castelli MV, Zacchino SA, Domínguez JN, Lobo G, Charris-Charris J, Cortés JC, Ribas JC, Devia C, Rodríguez AM, Enriz RD. In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorg Med Chem. 2001;9(8):1999-2013. doi: 10.1016/s0968-0896(01)00116-x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Pharmedicine Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.