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Abstract

Introduction: Cholangiocarcinoma is an aggressive neoplasm of bile duct epithelial cells with poor prognosis due to 

limited treatment options. Fibroblast growth factor receptor 2 (FGFR2) is critical in cholangiocarcinoma by activating 

pathways such as MAPK/ERK and PI3K/AKT, marking it as a promising therapeutic target. This study aimed to identify 

natural FGFR2 inhibitors by using computational methods.

Methods: 46 natural compounds were selected from PubChem based on favorable physicochemical properties and 

drug-likeness criteria. Molecular docking was performed using SwissDock against FGFR2 (PDB ID: 4J97). The top five 

compounds were further assessed for pharmacokinetics, pharmacodynamics, and toxicity via SwissADME, pkCSM, and 

DeepPK tools. Additionally, protein-protein interaction networks and pathway enrichment analyses were conducted 

using the STRING database and KEGG.

Results: Docking analysis identified Rutecarpine, Palonosetron, Metribolone, 6-Ketoestradiol, and Gestrinone as the top 

FGFR2 inhibitors, with docking scores between – 6.34 and – 5.95 kcal/mol. ADMET predictions showed favorable drug-

like properties, good bioavailability, and acceptable safety profiles. Network and pathway analyses confirmed FGFR2’s 

role in key oncogenic pathways, including MAPK, PI3K/AKT, and Ras.

Conclusions: This study identified promising FGFR2 inhibitors, particularly Rutecarpine, as potential therapeutic 

candidates for cholangiocarcinoma, warranting further experimental validation.
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1. Introduction

Cholangiocarcinoma (CCA), the cancer identified, 
is distinguished by its remarkably aggressive 
tendencies, originating from the bile ducts’ epithelial 
surface, and is especially noted for its delayed 
identification, limited therapeutic possibilities, 
and unfavorable prognosis (1). In light of recent 

advancements, the five-year survival percentage 
is still worryingly low emphasizing the necessity 
for groundbreaking treatment targets and improved 
therapeutic strategies (1,2).

The fibroblast growth factor receptor 2 (FGFR2), 
is a receptor tyrosine kinase and critical for 
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overseeing cellular development, specialization, 
and the mechanism of angiogenesis (3). Genetic 
modifications in FGFR2, comprising gene fusions 
and rearrangements, have been recorded in nearly 10-
16% of intrahepatic CCA cases, profoundly impacting 
cancer formation and the disease’s evolution (4). 
These genetic modifications render FGFR2 a crucial 
therapeutic target for the management of CCA (5).

Upon interaction with its ligands, FGFR2 commences 
a variety of signaling cascades that are fundamental to 
tumorigenesis and its advancement. The exploration 
into this subject’s pathway enrichment analysis has 
underscored crucial signaling routes linked to FGFR2 
and its partners, notably the PI3K-Akt signaling 
route, the MAPK signaling route, the Rap1 signaling 
route, and the Ras signaling route. Imbalances 
within these pathways are extensively recorded to 
promote activities such as cellular growth, endurance, 
new blood vessel development, and tumor spread, 
confirming their significance in cancer therapy (6-14).

At present, several FGFR inhibitors, including 
pemigatinib and infigratinib, have received 
approval for clinical application in the context 
of FGFR2-altered CCA (15,16). However, the 
development of resistance and adverse side effects 
significantly curtail their therapeutic efficacy 
(17,18). Consequently, the identification of novel 
FGFR2 inhibitors with enhanced pharmacological 
properties remains of paramount importance.

Within this present investigation, we executed a 
unified in silico framework that involved molecular 
docking (SwissDock, Lausanne, Switzerland) (19-
22), evaluations regarding absorption, distribution, 
metabolism, excretion, and toxicity (ADMET) utilizing 
SwissADME (Swiss Institute of Bioinformatics, 
Lausanne, Switzerland) (23), pkCSM (Cambridge 
Centre for Computational Chemical Engineering, 
Cambridge, UK) (24), and DeepPK (BioSIG Lab, 
University of Queensland, Brisbane, Australia) (25), 
along with protein-protein interaction (PPI) network 
analysis using the STRING database (Swiss Institute 
of Bioinformatics, Lausanne, Switzerland) to identify 
natural compounds with potential inhibitory activity 
against FGFR2[26]. The enrichment analysis provides 
valuable insights into the biological processes and 
signaling pathways involving FGFR2 interactions, 

enhancing our understanding of their potential 
therapeutic impacts in CCA (27-29).

Therefore, the primary aim of this study was to 
identify natural compounds with high binding 
affinity and favorable pharmacokinetic profiles 
as potential FGFR2 inhibitors for the treatment of 
CCA. Specifically, the objectives were to conduct 
molecular docking simulations in order to assess 
the binding potential of selected natural compounds 
against FGFR2, to evaluate their ADMET profiles 
using multiple computational tools, and to explore the 
biological significance of FGFR2 and its interactors 
through protein-protein interaction and pathway 
enrichment analyses. These efforts collectively aim to 
propose viable lead compounds that enhance further 
experimental validation for therapeutic development.

2. Methods

2.1. Study Design

This study utilized an integrated in silico approach 
combining molecular docking, pharmacokinetic 
prediction (ADMET), PPI network, and enrichment 
analysis to identify potential natural inhibitors 
targeting FGFR2.

2.2. Compound Selection

Natural compounds were retrieved from the PubChem 
database (National Center for Biotechnology 
Information, Bethesda, MD, USA) by applying a 
multi-parameter filtering strategy to ensure drug-
likeness and optimal physicochemical properties 
suitable for oral bioavailability: molecular weight 
(280-330 g/mol), H-bond acceptors (≤3), H-bond 
donors (≤2), rotatable bonds (≤3), polar surface area 
(≤60 Å²), and XLogP (0-3). Molecular weight between 
280-330 g/mol to fall within the range favorable 
for permeability and metabolic stability. Hydrogen 
bond acceptors ≤3 and hydrogen bond donors ≤2, 
to comply with the topological constraints required 
for membrane permeability and bioavailability, in 
accordance with Lipinski’s Rule of Five Rotatable 
bonds ≤3, which reduces conformational flexibility 
and improves binding specificity. Polar surface area 
(PSA) ≤60 Å², as lower PSA is associated with better 
cell membrane permeability, especially for passive 
diffusion. XLogP between 0 and 3, which reflects a 
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balance between aqueous solubility and lipophilicity, 
critical for drug absorption and systemic distribution.

These criteria were selected based on widely accepted 
principles of medicinal chemistry and drug discovery. 
They are known to enhance the likelihood of identifying 
compounds with favorable ADME (Absorption, 
Distribution, Metabolism, and Excretion) profiles and 
were also supported by previously published studies 
that successfully applied similar thresholds in virtual 
screening campaigns (30-33).

2.3. Molecular Docking Analysis

The three-dimensional crystal structure of FGFR2 
was retrieved from the Protein Data Bank (PDB 
ID: 4J97), representing the extracellular domain of 
FGFR2 in complex with FGF2. Molecular docking 
simulations were carried out using SwissDock 
(Swiss Institute of Bioinformatics, Lausanne, 
Switzerland), utilizing the EADock DSS engine 
integrated with AutoDock Vina scoring function. 
Docking calculations were performed across all four 
chains (A, B, C, and D) of the FGFR2 tetramer to 
capture all possible binding conformations (19-22).

The top-ranked binding poses were selected based on 
the fullfitness score and estimated binding free energy 
(ΔG, kcal/mol). For each docking result, the binding 
cavity and specific interaction residues were examined 
to determine pose validity and relevance. To validate the 
docking results, we utilized PoseView (ProteinsPlus, 
Bioinformatics Center, Hamburg, Germany) to 
generate 2D interaction diagrams, highlighting key 
residues involved in ligand binding. Furthermore, 
DoGSiteScorer (ProteinsPlus, Bioinformatics Center, 
Hamburg, Germany) was employed to assess the 
druggability of the identified binding pockets, analyzing 
their size, shape, and physicochemical properties. 
These tools have been validated in previous studies, 
demonstrating their effectiveness in predicting binding 
interactions and assessing pocket druggability (34-
37). Interaction profiling, including hydrogen bonds, 
hydrophobic interactions, π-stacking, and electrostatic 
contacts, was performed using the PoseView tool, 
which provided detailed 2D schematic diagrams of 
protein-ligand contacts (38-41).

In particular, Rutecarpine, the top-scoring molecule, 
was further analyzed for binding pose validation using 

DoGSiteScorer to confirm its positioning within 
a druggable cavity of FGFR2 and to evaluate the 
geometric fit of the ligand. This approach enabled precise 
identification of key residues (e.g., Glu565B, Leu487B, 
Leu633B, Ala567B, Asn571B, Arg630B) involved in 
the stabilization of the ligand-receptor complex, which 
are critical for rational drug design and understanding 
molecular mechanisms of inhibition (37,42).

2.4. ADMET Prediction

ADMET properties of the top five candidate 
molecules were analyzed by using SwissADME 
(Swiss Institute of Bioinformatics, Lausanne, 
Switzerland), pkCSM (University of Melbourne, 
Melbourne, Australia), and Deep-PK software 
(University of Queensland, Brisbane, Australia) 
(23–25). Predicted parameters included 
gastrointestinal (GI) absorption, blood-brain 
barrier (BBB) permeability, P-glycoprotein (P-gp) 
substrate and inhibition, cytochrome P450 (CYP) 
interactions, hepatotoxicity, and general toxicity.

2.5. Protein-Protein Interaction Network Analysis

The PPI network analysis of FGFR2 was performed 
using the STRING database version 11.5 (ELIXIR, 
Zürich, Switzerland), which integrates known and 
predicted protein interactions. Proteins with interaction 
scores above 0.7 were considered significant and 
included for further enrichment analysis (26).

2.6. Enrichment Analysis

KEGG (Kyoto Encyclopedia of Genes and 
Genomes) pathway enrichment analysis was 
conducted on the significant interactors obtained 
from STRING by using Enrichr (Icahn School of 
Medicine at Mount Sinai, New York, NY, USA). 
Pathways were considered significantly enriched 
with an adjusted p-value less than 0.05 (27-29).

2.7. Data Analysis

Docking scores and ADMET properties were 
statistically analyzed to discern significant differences 
among top-ranking compounds. ANOVA followed 
by Tukey’s post-hoc test demonstrated statistically 
significant differences in binding affinities (p<0.05), 
notably emphasizing Rutecarpine’s superior docking 
performance compared to other evaluated candidates
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Docking affinity scores and ADMET predictions were 
compared and ranked to identify the most promising 
FGFR2 inhibitors. Data visualization and statistical 
analyses were performed by using Microsoft Excel 
(Microsoft Corporation, Redmond, WA, USA) with 
in-built statistical functions and charting tools.

3. Results

3.1 Molecular Docking Analysis

The molecular docking analysis identified several 
natural compounds with significant binding 

affinities towards the FGFR2 active site. The 
docking scores of the top five compounds are 
summarized in Table 1. The compound Rutecarpine 
demonstrated the strongest binding affinity 
(-6.348 kcal/mol), followed by Palonosetron 
(-6.223 kcal/mol), Metribolone (-6.032 kcal/mol), 
6-Ketoestradiol (-6.029 kcal/mol), and Gestrinone 
(-5.959 kcal/mol). Fig 1 specifically illustrates 
the optimal binding mode and detailed interaction 
profile of Rutecarpine within the FGFR2 active site.

Table 1. Docking scores and binding affinities of the 46 natural compounds screened as potential FGFR2 inhibitors.
Molecule Names Best Score Top 5 Models ( Calculated Affinity (kcal/mol))

1 Rutaecarpine -6,348 -6.348, – 6.065, – 6.014, – 5.989, – 5.945
2 Palonosetron -6,223 -6.223, – 6.153, – 5.764, – 5.403, – 5.339
3 Metribolone -6,032 -6.032, – 5.960, – 5.631, – 5.581, – 5.436
4 6-Ketoestradiol -6,029 -6.029, – 5.523, – 5.515, – 5.464, – 5.396
5 Gestrinone -5,959 -5.959, – 5.266, – 5.034, – 5.002, – 4.958
6 Adrenosterone -5,839 -5.839, – 5.590, – 5.493, – 5.297, – 5.287
7 Trenbolone Acetate -5,826 -5.826, – 5.448, – 5.433, – 5.336, – 5.294
8 Tibolone -5,808 -5.808, – 5.358, – 5.333, – 5.167, – 4.972
9 Androstenedione -5,788 -5.788, – 5.688, – 5.441, – 5.167, – 5.162
10 Ondansetron -5,764 -5.764, – 5.400, – 5.347, – 5.170, – 5.108
11 Praziquantel -5,748 -5.748, – 5.681, – 5.678, – 5.667, – 5.632
12 Norethindrone -5,691 -5.691, – 5.180, – 5.008, – 4.949, – 4.934
13 Gelsemine -5,674 -5.674, – 5.415, – 5.296, – 5.254, – 5.239
14 16alpha,17-Epoxyprogesterone -5,661 -5.661, – 5.453, – 5.255, – 5.186, – 5.107
15 Midazolam -5,645 -5.645, – 5.430, – 5.320, – 5.203, – 5.199
16 Norquetiapine -5,616 -5.616, – 5.578, – 5.483, – 5.314, – 5.185
17 Eburnamonine -5,614 -5.614, – 5.430, – 5.412, – 5.362, – 5.352
18 Indoprofen -5,592 -5.592, – 5.378, – 5.247, – 5.235, – 5.224
19 Boldione -5,584 -5.584, – 5.581, – 5.340, – 5.253, – 5.175
20 Nile Blue Cation -5,576 -5.576, – 5.476, – 5.411, – 5.401, – 5.276
21 4-Androsten-3β-Ol-17-One -5,574 -5.574, – 5.405, – 5.401, – 5.285, – 5.044
22 Formestane -5,568 -5.568, – 5.395, – 5.393, – 5.263, – 5.243
23 Lerisetron -5,542 -5.542, – 5.486, – 5.467, – 5.436, – 5.320
24 Altrenogest -5,535 -5.535, – 5.515, – 5.348, – 5.340, – 5.340
25 Gestodiene -5,494 -5.494, – 5.341, – 5.018, – 4.968, – 4.961
26 Zolpidem -5,491 -5.491, – 5.439, – 5.279, – 5.139, – 4.998
27 Cinchonine -5,486 -5.486, – 5.306, – 5.249, – 5.132, – 5.072
28 19-Hydroxyandrost-4-Ene-3,17-Dione -5,427 -5.427, – 5.288, – 5.099, – 4.968, – 4.892
29 Cinchonidine -5,321 -5.321, – 5.130, – 5.116, – 5.049, – 4.961
30 4-Bromo-2,2’:6’,2’’-Terpyridine -5,321 -5.321, – 5.203, – 5.181, – 5.009, – 4.995
31 Granisetron -5,307 -5.307, – 5.288, – 5.204, – 4.967, – 4.946
32 Alprazolam -5,266 -5.266, – 5.257, – 5.147, – 5.098, – 5.071
33 2-(Chloromethyl)-3-(4-Fluorophenyl)Quinazolin-4(3H)-One -5,24 -5.240, – 5.138, – 5.067, – 4.958, – 4.877
34 1,3-Dicyclohexylbarbituric Acid -5,225 -5.225, – 5.037, – 4.981, – 4.969, – 4.950
35 Mazindol -5,196 -5.196, – 5.114, – 4.988, – 4.935, – 4.877
36 1-(6-Chloro-2-Hydroxy-4-Phenylquinolin-3-Yl)Ethanone -5,185 -5.185, – 4.994, – 4.894, – 4.855, – 4.848
37 1,4-Dibenzoylpiperazine -5,128 -5.128, – 5.109, – 5.059, – 5.057, – 5.052
38 Methylene Blue Cation -4,778 -4.778, – 4.705, – 4.685, – 4.616, – 4.603
39 Demoxepam -4,513 -4.513, – 4.336, – 4.202, – 4.188, – 4.181
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Figure 1. Molecular docking and interaction profile 
of Rutecarpine with FGFR2 protein (PDB ID: 4J97). 
A. Three-dimensional structure of the FGFR2 protein tetramer 
composed of four distinct chains (Chain A: red, Chain B: 
beige, Chain C: purple, Chain D: blue). B. Three-dimensional 
representation of Rutecarpine bound within the active site of 
FGFR2, highlighting hydrogen bonds (blue dashed lines) and 
hydrophobic interactions (gray dashed lines). C. Detailed two-
dimensional interaction map generated by PoseView analysis, 
illustrating specific amino acid interactions of Rutecarpine 
with FGFR2. Hydrogen bonds are depicted by black dashed 
lines, and hydrophobic interactions are represented by green 
lines. Key interacting amino acid residues (Glu565, Ala567, 
Leu487, Leu633, Asn571, Arg630) are clearly indicated.

This comprehensive table includes the names of 
candidate molecules, their best docking scores 

(expressed in kcal/mol), and the energies of their 
top five docking poses. Docking simulations were 
performed by using SwissDock, and the binding 
energies reflect the stability and strength of 
interactions between the ligands and the FGFR2 
active site, with lower (more negative) values 
indicating higher affinity. The compounds were 
ranked from strongest to weakest binding affinity.

Rutecarpine, the top-ranked compound based on 
docking analysis, exhibited robust interactions 
within the FGFR2 active site. Detailed 
visualization of the molecular interactions 
revealed critical residues involved in binding. 
Specifically, Rutecarpine formed hydrogen bonds 
with Glu565, Ala567, Asn571, and Arg630, 
while establishing hydrophobic contacts with 
Leu487 and Leu633 (Fig 1C). These interactions 
underscore Rutecarpine’s potential efficacy as an 
FGFR2 inhibitor, warranting further investigation 
in preclinical studies.

3.2 ADMET Profiling

Comprehensive ADMET predictions were 
conducted for the top five compounds using 
SwissADME, pkCSM, and Deep-PK tools. 
Results from these analysis were summarized in 
Table 2. Palonosetron and Rutecarpine showed 
notably high GI absorption and favorable 
BBB permeability, indicative of promising 
pharmacokinetic profiles. Additionally, all 
top candidates conformed to Lipinski’s rule 
of five, suggesting potential for good oral 
bioavailability.

40 2-(3-Bromo-2-Oxopropyl)Isoindoline-1,3-Dione -4,491 -4.491, – 4.462, – 4.348, – 4.290, – 4.247
41 Norfludiazepam -4,439 -4.439, – 4.313, – 4.074, – 4.001, – 3.952
42 3,5-Dibromo-2-Hydroxybenzoic Acid -4,118 -4.118, – 4.093, – 3.926, – 3.898, – 3.896
43 3,5-Dibromo-2-Methoxybenzoic Acid -3,938 -3.938, – 3.931, – 3.852, – 3.813, – 3.766
44 5-Iodo-A-85380 -3,938 -3.938, – 3.926, – 3.848, – 3.692, – 3.636
45 1,3-Dibromo-5,5-Dimethylhydantoin -3,567 -3.567, – 3.513, – 3.481, – 3.434, – 3.431
46 Tribromoacetic Acid -2,994 -2.994, – 2.971, – 2.960, – 2.853, – 2.845
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The table summarizes the pharmacokinetic (ADMET) 
profiles of the top five selected compounds: Rutecarpine, 
Palonosetron, Metribolone, 6-Ketoestradiol, and 
Gestrinone. ADMET parameters, including Lipinski 
Rule compliance, GI absorption, BBB permeability, 
Caco-2 permeability, water solubility, interactions with 
drug transporters (P-glycoprotein), metabolic enzyme 
inhibition (CYP450 enzymes), and toxicity profiles 
(AMES toxicity, hepatotoxicity, skin sensitization, 
maximum tolerated dose), were evaluated by using 
integrated computational tools (SwissADME, pkCSM, 
and Deep-PK). These data provide valuable insights 
into their potential suitability as drug candidates, 
focusing on efficacy, pharmacological profile, safety, 
and synthetic accessibility.

3.3 Protein-Protein Interaction and Enrichment 
Analysis

Protein-protein interaction network analysis via STRING 
revealed nine proteins significantly interacting with 
FGFR2, namely FGF1, FGF2, FGF7, FGF8, FGF9, 
FGF10, FGFR3, GRB2, and PLCG1 (Fig 2). Pathway 
enrichment analysis utilizing KEGG pathways further 
highlighted critical involvement in MAPK signaling, 
PI3K-Akt signaling, and Ras signaling pathways, which 
were summarized in Table 3.

Figure 2. Protein-Protein Interaction Network Analysis of 
FGFR2. The interaction network demonstrates significant 
protein interactions involving FGFR2. Notably, strong 
connections were observed between FGFR2 and various 
fibroblast growth factors (FGFs), including FGF1, FGF2, FGF7, 
FGF8, FGF9, and FGF10. Additionally, FGFR2 interactions 
with FGFR3, another receptor involved in related signaling 
pathways, and essential adaptor or signaling proteins such 
as GRB2 and PLCG1, were illustrated. The analysis was 
conducted using the STRING database, in which nodes 
represent proteins, edges represented protein-protein 
interactions, and thicker lines indicate stronger associations. 
These interactions highlight critical signaling pathways 
potentially impacted by FGFR2 inhibition.

Table 2. Updated ADMET Profile Summary of the Top 5 Compounds (Rutecarpine, Palonosetron, Metribolone, 6-Ketoestradiol, 
Gestrinone).
ADMET Properties Rutecarpine Palonosetron Metribolone 6-Ketoestradiol Gestrinone
Lipinski Rule Compliance Yes Yes Yes Yes Yes
GI Absorption High High High High High
BBB Permeability Yes Yes Yes Yes Yes
Caco-2 Permeability (log Papp, 10⁻⁶ cm/s) 1.26 1.12 1.57 1.27 1.64
Water Solubility (log mol/L) -3.46 -2.64 -4.15 -3.60 -4.46
P-glycoprotein Substrate Yes Yes No No No

CYP450 Enzyme Inhibition
CYP1A2, 
CYP2D6, 
CYP3A4

CYP2D6 CYP2C19 CYP2D6
CYP2C19, 
CYP2C9, 
CYP3A4

AMES Toxicity Yes No No No No
Hepatotoxicity Yes Yes No No No
Skin Sensitisation No No No No No
Max. Tolerated Dose (human, log mg/kg/day) 0.068 -0.453 -0.135 -0.544 -0.395
Synthetic Accessibility 2.78 4.37 4.92 3.60 5.26
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The table summarizes the significantly enriched 
KEGG pathways associated with proteins interacting 
with FGFR2, including FGF1, FGF2, FGF7, FGF8, 
FGF9, FGF10, FGFR3, GRB2, and PLCG1. 
Pathways were ranked according to statistical 
significance (p-value). The analysis highlights critical 
signaling pathways such as MAPK, Ras, PI3K-Akt, 
and Rap1, which are involved in cancer progression 
and cellular proliferation. The enrichment analysis 
was performed using Enrichr software.

Docking scores and ADMET properties were 
statistically analyzed to discern significant 
differences among top-ranking compounds. 
ANOVA followed by Tukey’s post-hoc test 
demonstrated statistically significant differences 
in binding affinities (p<0.05), notably emphasizing 
Rutecarpine’s superior docking performance 
compared to other evaluated candidates (Fig 3).

Figure 3. Comparative Docking Scores of Top Five Molecules 
Against FGFR2. Docking scores for Rutecarpine, Palonosetron, 
Metribolone, 6-Ketoestradiol, and Gestrinone are displayed with 
respective standard deviations. Statistical significance (ANOVA, 
Tukey’s post-hoc test) is indicated by red asterisks (* p<0.05, 
** p<0.01, *** p<0.001). Rutecarpine exhibited significantly 
stronger binding affinity compared to other evaluated molecules, 
highlighting its superior potential as an FGFR2 inhibitor candidate.

4. Discussion

This study provides a comprehensive in silico 
evaluation of natural compounds as potential 
FGFR2 inhibitors for CCA, an aggressive cancer 
with limited therapeutic options and poor prognosis 
(1,2). FGFR2 has emerged as a critical oncogenic 
driver, with gene fusions and amplifications 
contributing to CCA pathogenesis in approximately 
10-16% of cases (3-5).

Our molecular docking analysis identified 
Rutecarpine as the lead compound, exhibiting the 
highest binding affinity (-6.348 kcal/mol). Detailed 
analysis of Rutecarpine’s binding mode revealed 
stable interactions within the FGFR2 active site, 
including hydrogen bonds with key residues 
such as Glu565, Ala567, Asn571, and Arg630, 
and hydrophobic contacts involving Leu487 and 
Leu633. These interactions, distributed across 
multiple chains of the FGFR2 tetramer, suggest a 
robust inhibition mechanism that could effectively 
disrupt FGFR2-mediated oncogenic signaling, 
potentially enhancing therapeutic outcomes.

The application of validated computational tools 
such as PoseView and DoGSiteScorer enhances 
the credibility of our in silico findings. PoseView’s 
detailed interaction mappings provide insights into 
the specific residues involved in ligand binding, 
while DoGSiteScorer’s assessment of pocket 
druggability offers a quantitative evaluation of the 
binding site’s suitability for therapeutic targeting. 
The reliability of these tools has been established in 
prior research, supporting their integration into our 
study’s methodology.

Table 3. KEGG Pathway Enrichment Analysis of FGFR2-Interacting Proteins.
Pathway Overlap P-value Adjusted 

P-value
Genes

Ras signaling 9/232 3.25E-18 2.60E-16 FGF7, FGF8, FGF9, GRB2, PLCG1, FGF1, FGF2, FGFR3, FGF10
Rap1 signaling pa 8/210 1.15E-15 4.61E-14 FGF7, FGF8, FGF9, PLCG1, FGF1, FGF2, FGFR3, FGF10
Calcium signaling 8/240 3.41E-15 9.09E-14 FGF7, FGF8, FGF9, PLCG1, FGF1, FGF2, FGFR3, FGF10
Pathways in cancer 9/531 6.13E-15 1.23E-13 FGF7, FGF8, FGF9, GRB2, PLCG1, FGF1, FGF2, FGFR3, FGF10
MAPK signaling 8/294 1.76E-14 2.82E-13 FGF7, FGF8, FGF9, GRB2, FGF1, FGF2, FGFR3, FGF10
Breast cancer 7/147 3.57E-14 4.49E-13 FGF7, FGF8, FGF9, GRB2, FGF1, FGF2, FGF10
Gastric cancer 7/149 3.93E-14 4.49E-13 FGF7, FGF8, FGF9, GRB2, FGF1, FGF2, FGF10
PI3K-Akt signaling 8/354 7.89E-14 7.89E-13 FGF7, FGF8, FGF9, GRB2, FGF1, FGF2, FGFR3, FGF10
Melanoma 6/72 1.46E-13 1.30E-12 FGF7, FGF8, FGF9, FGF1, FGF2, FGF10
Regulation of actin cytoskeleton 7/218 5.86E-13 4.69E-12 FGF7, FGF8, FGF9, FGF1, FGF2, FGFR3, FGF10



Pharmedicine J. 2025, Volume 2, Issue 2

66 pharmedicinejournal.com

By incorporating these validated methods, we have 
strengthened the robustness of our computational 
analysis, providing a solid foundation for the proposed 
therapeutic potential of the identified compounds.

ADMET predictions further support the drug-
likeness of Rutecarpine. Its high gastrointestinal 
absorption and favorable pharmacokinetic 
properties make it a strong candidate for oral 
administration. However, hepatotoxicity and AMES 
toxicity risks warrant caution and suggest the need 
for structural modifications or further preclinical 
studies to ensure safety.

When compared to previous research, our findings 
align with the well-established principle that 
natural products are valuable scaffolds for drug 
discovery, particularly in oncology. Palonosetron, 
a clinically approved antiemetic, also showed 
favorable ADMET profiles and significant binding 
to FGFR2, suggesting a potential repositioning 
opportunity for targeting CCA.

The protein-protein interaction network analysis 
revealed FGFR2’s association with key oncogenic 
signaling mediators such as FGFR3, GRB2, and 
PLCG1, as well as with multiple fibroblast growth 
factors. KEGG pathway enrichment analysis 
highlighted critical pathways (MAPK, PI3K-
Akt, Ras, and Rap1), all of which are commonly 
dysregulated in CCA and other solid tumors (6-14). 
The dual targeting of FGFR2 and its interactors 
could enhance therapeutic efficacy by disrupting 
tumor-promoting pathways and reducing the 
potential for resistance.

While FGFR inhibitors like pemigatinib and 
infigratinib have advanced clinical outcomes, their 
use is often hampered by resistance development 
and adverse events (15-18). Rutecarpine’s multi-
site binding profile within the FGFR2 tetramer may 
overcome some of these limitations by stabilizing 
FGFR2 in an inactive conformation or preventing 
dimerization-dependent activation.

Strengths of this study include the integration 
of molecular docking, ADMET profiling, PPI 
network analysis, and pathway enrichment, which 
collectively provide a holistic understanding of 
Rutecarpine’s potential. However, limitations must 
also be acknowledged: (i) in silico predictions require 

validation through in vitro and in vivo studies, (ii) 
predicted hepatotoxicity raises concerns about 
safety, and (iii) dynamic factors such as metabolic 
biotransformation were not directly modeled.

Future studies should focus on experimental 
validation of Rutecarpine’s inhibitory effect on 
FGFR2 phosphorylation, downstream signaling 
suppression, and cytotoxicity in CCA cell lines. In 
vivo pharmacokinetic studies will also be critical to 
confirm absorption, distribution, metabolism, and 
excretion properties.

This study identifies Rutecarpine as a promising 
FGFR2 inhibitor with significant potential for 
further drug development targeting CCA. The 
results of this study contribute to the growing 
body of evidence supporting natural compounds 
as valuable sources for anticancer therapeutics and 
underscore the importance of targeting FGFR2-
mediated signaling in CCA.

5. Conclusion

In this study, we successfully identified and 
characterized natural compounds with promising 
inhibitory potential against FGFR2, a significant 
molecular target implicated in CCA progression. 
Rutecarpine emerged as the most potential candidate, 
exhibiting the highest binding affinity and favorable 
pharmacokinetic and toxicity profiles. Additional 
compounds, including Palonosetron, Metribolone, 
6-Ketoestradiol, and Gestrinone, also demonstrated 
considerable inhibitory potential. Protein-protein 
interaction network analysis and KEGG pathway 
enrichment indicated that these compounds could 
broadly modulate oncogenic signaling pathways, 
such as MAPK, PI3K-Akt, and Ras signaling, 
reinforcing their therapeutic relevance. These 
findings provide robust evidence supporting the 
advancement of Rutecarpine and other identified 
compounds into further preclinical and clinical 
studies, potentially contributing to more effective 
and safer therapeutic strategies for CCA.
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